John H Cushman

Publications listed in MathSciNet

[1] Moongyu Park and John H. Cushman. On upscaling operator-stable Lévy motions in fractal porous media. J. Comput. Phys., 217(1):159-165, 2006.
[2] Moongyu Park, Natalie Kleinfelter, and John H. Cushman. Scaling laws and Fokker-Planck equations for 3-dimensional porous media with fractal mesoscale. Multiscale Model. Simul., 4(4):1233-1244 (electronic), 2005.
[3] Pawan P. Singh, Dirk E. Maier, John H. Cushman, Kamyar Haghighi, and Carlos Corvalan. Effect of viscoelastic relaxation on moisture transport in foods. I. Solution of general transport equation. J. Math. Biol., 49(1):1-19, 2004.
[4] Pawan P. Singh, Dirk E. Maier, John H. Cushman, and Osvaldo H. Campanella. Effect of viscoelastic relaxation on moisture transport in foods. II. Sorption and drying of soybeans. J. Math. Biol., 49(1):20-34, 2004.
[5] John H. Cushman, Pawan P. Singh, and Lynn S. Bennethum. Toward rational design of drug delivery substrates. II. Mixture theory for three-scale biocompatible polymers and a computational example. Multiscale Model. Simul., 2(2):335-357 (electronic), 2004.
[6] John H. Cushman, Lynn S. Bennethum, and Pawan P. Singh. Toward rational design of drug delivery substrates. I. Mixture theory for two-scale biocompatible polymers. Multiscale Model. Simul., 2(2):302-334 (electronic), 2004.
[7] M. Moroni, J. H. Cushman, and A. Cenedese. A 3D-PTV two-projection study of pre-asymptotic dispersion in porous media which are heterogeneous on the bench scale. Internat. J. Engrg. Sci., 41(3-5):337-370, 2003. The Eringen anniversary issue (University Park, PA, 2002).
[8] Lynn Schreyer Bennethum and John H. Cushman. Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics. II. Constitutive theory. Transp. Porous Media, 47(3):337-362, 2002.
[9] Lynn Schreyer Bennethum and John H. Cushman. Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics. I. Macroscale field equations. Transp. Porous Media, 47(3):309-336, 2002.
[10] F. Alejandro Bonilla and John H. Cushman. On perturbative expansions to the stochastic flow problem. Transp. Porous Media, 42(1-2):3-35, 2001.
[11] Lynn Schreyer Bennethum, Márcio A. Murad, and John H. Cushman. Macroscale thermodynamics and the chemical potential for swelling porous media. Transp. Porous Media, 39(2):187-225, 2000.
[12] Márcio A. Murad and John H. Cushman. Thermomechanical theories for swelling porous media with microstructure. Internat. J. Engrg. Sci., 38(5):517-564, 2000.
[13] Márcio A. Murad and John H. Cushman. Multiscale flow and deformation in hydrophilic swelling porous media. Internat. J. Engrg. Sci., 34(3):313-338, 1996.
[14] Lynn Schreyer Bennethum and John H. Cushman. Multiscale, hybrid mixture theory for swelling systems. II. Constitutive theory. Internat. J. Engrg. Sci., 34(2):147-169, 1996.
[15] Lynn Schreyer Bennethum and John H. Cushman. Multiscale, hybrid mixture theory for swelling systems. I. Balance laws. Internat. J. Engrg. Sci., 34(2):125-145, 1996.
[16] John H. Cushman, Xiaolong Hu, and Timothy R. Ginn. Nonequilibrium statistical mechanics of preasymptotic dispersion. J. Statist. Phys., 75(5-6):859-878, 1994.
[17] John H. Cushman. Multiphase transport in the space of stochastic tempered distributions. IMA J. Appl. Math., 36(2):159-175, 1986.
[18] John H. Cushman. Multiphase transport based on compact distributions. Acta Appl. Math., 3(3):239-254, 1985.
[19] John H. Cushman. Multiphase transport equations. I. General equation for macroscopic statistical, local, space-time homogeneity. Transport Theory Statist. Phys., 12(1):35-71, 1983.
[20] John H. Cushman and Chi Hua Huang. General hyperbolic difference formulas for linear and quasilinear hyperbolic equations. Internat. J. Numer. Methods Fluids, 2(4):387-405, 1982.
[21] Chi Hua Huang and John H. Cushman. High order accurate, explicit, difference formulas for the classical wave equation. J. Comput. Phys., 40(2):376-395, 1981.
[22] John H. Cushman. Continuous families of Lax-Wendroff schemes. Internat. J. Numer. Methods Engrg., 17(7):975-989, 1981.
[23] John H. Cushman. Difference schemes or element schemes? Internat. J. Numer. Methods Engrg., 14(11):1643-1651, 1979.