Laszlo Lempert
Publications listed in MathSciNet
| [1] | László Lempert. Acyclic sheaves in Banach spaces. In Geometric analysis of PDE and several complex variables, volume 368 of Contemp. Math., pages 313-320. Amer. Math. Soc., Providence, RI, 2005. |
| [2] | László Lempert. Holomorphic functions on (generalized) loop spaces. Math. Proc. R. Ir. Acad., 104A(1):35-46 (electronic), 2004. |
| [3] | László Lempert and Ning Zhang. Dolbeault cohomology of a loop space. Acta Math., 193(2):241-268, 2004. |
| [4] | László Lempert. Vanishing cohomology for holomorphic vector bundles in a Banach setting. Asian J. Math., 8(1):65-85, 2004. |
| [5] | László Lempert. The equation in N variables, as N varies. In Complex analysis in several variables-Memorial Conference of Kiyoshi Oka's Centennial Birthday, volume 42 of Adv. Stud. Pure Math., pages 189-202. Math. Soc. Japan, Tokyo, 2004. |
| [6] | László Lempert. Plurisubharmonic domination. J. Amer. Math. Soc., 17(2):361-372 (electronic), 2004. |
| [7] | László Lempert. Analytic cohomology in Fréchet spaces. Comm. Anal. Geom., 11(1):17-32, 2003. |
| [8] | László Lempert. Holomorphic approximation in Fréchet spaces. Comm. Anal. Geom., 11(1):1-15, 2003. |
| [9] | László Lempert. On Fréchet spaces with a dominant norm. Math. Proc. R. Ir. Acad., 102A(2):127-129, 2002. |
| [10] | László Lempert and Róbert Szőke. The tangent bundle of an almost complex manifold. Canad. Math. Bull., 44(1):70-79, 2001. |
| [11] | László Lempert. The Dolbeault complex in infinite dimensions. III. Sheaf cohomology in Banach spaces. Invent. Math., 142(3):579-603, 2000. |
| [12] | László Lempert. Approximation of holomorphic functions of infinitely many variables. II. Ann. Inst. Fourier (Grenoble), 50(2):423-442, 2000. |
| [13] | László Lempert. Approximation de fonctions holomorphes d'un nombre infini de variables. Ann. Inst. Fourier (Grenoble), 49(4):1293-1304, 1999. |
| [14] | László Lempert. The Dolbeault complex in infinite dimensions. II. J. Amer. Math. Soc., 12(3):775-793, 1999. |
| [15] | László Lempert. The Cauchy-Riemann equations in infinite dimensions. In Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1998), pages Exp.No.VIII, 8. Univ. Nantes, Nantes, 1998. |
| [16] | László Lempert. The Dolbeault complex in infinite dimensions. I. J. Amer. Math. Soc., 11(3):485-520, 1998. |
| [17] | László Lempert. Spaces of Cauchy-Riemann manifolds. In CR-geometry and overdetermined systems (Osaka, 1994), volume 25 of Adv. Stud. Pure Math., pages 221-236. Math. Soc. Japan, Tokyo, 1997. |
| [18] | László Lempert. The problem of complexifying a Lie group. In Multidimensional complex analysis and partial differential equations (Sao Carlos, 1995), volume 205 of Contemp. Math., pages 169-176. Amer. Math. Soc., Providence, RI, 1997. |
| [19] | László Lempert. Algebraic approximations. In Geometric complex analysis (Hayama, 1995), pages 393-399. World Sci. Publ., River Edge, NJ, 1996. |
| [20] | László Lempert. The Virasoro group as a complex manifold. Math. Res. Lett., 2(4):479-495, 1995. |
| [21] | László Lempert. Algebraic approximations in analytic geometry. Invent. Math., 121(2):335-353, 1995. |
| [22] | Jean-Pierre Demailly, László Lempert, and Bernard Shiffman. Algebraic approximations of holomorphic maps from Stein domains to projective manifolds. Duke Math. J., 76(2):333-363, 1994. |
| [23] | László Lempert. Embeddings of three-dimensional Cauchy-Riemann manifolds. Math. Ann., 300(1):1-15, 1994. |
| [24] | A. Erëmenko and L. Lempert. An extremal problem for polynomials. Proc. Amer. Math. Soc., 122(1):191-193, 1994. |
| [25] | László Lempert. Metamorphoses of the Kobayashi metric. In Proceedings of GARC Workshop on Geometry and Topology '93 (Seoul, 1993), volume 18 of Lecture Notes Ser., pages 177-210, Seoul, 1993. Seoul Nat. Univ. |
| [26] | László Lempert. Loop spaces as complex manifolds. J. Differential Geom., 38(3):519-543, 1993. |
| [27] | László Lempert. Complex structures on the tangent bundle of Riemannian manifolds. In Complex analysis and geometry, Univ. Ser. Math., pages 235-251. Plenum, New York, 1993. |
| [28] | László Lempert. Elliptic and hyperbolic tubes. In Several complex variables (Stockholm, 1987/1988), volume 38 of Math. Notes, pages 440-456. Princeton Univ. Press, Princeton, NJ, 1993. |
| [29] | Erik Andersén and László Lempert. On the group of holomorphic automorphisms of Cn. Invent. Math., 110(2):371-388, 1992. |
| [30] | László Lempert. On three-dimensional Cauchy-Riemann manifolds. J. Amer. Math. Soc., 5(4):923-969, 1992. |
| [31] | David Catlin and László Lempert. A note on the instability of embeddings of Cauchy-Riemann manifolds. J. Geom. Anal., 2(2):99-104, 1992. |
| [32] | László Lempert. Imbedding pseudo-Hermitian manifolds into a sphere. In Complex analysis (Wuppertal, 1991), Aspects Math., E17, pages 194-199. Vieweg, Braunschweig, 1991. |
| [33] | László Lempert and Róbert Szőke. Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann., 290(4):689-712, 1991. |
| [34] | László Lempert. Erratum: “A precise result on the boundary regularity of biholomorphic mappings” [Math.Z.193 (1986), no.4, 559-579; MR0867348 (88a:32033)]. Math. Z., 206(3):501-504, 1991. |
| [35] | László Lempert and Lee A. Rubel. An independence result in several complex variables. Proc. Amer. Math. Soc., 113(4):1055-1065, 1991. |
| [36] | Steve Bell and László Lempert. A C Schwarz reflection principle in one and several complex variables. J. Differential Geom., 32(3):899-915, 1990. |
| [37] | É. Amar and L. Lempert. Geometric regularity versus analytic regularity: higher codimensional case. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17(2):297-321, 1990. |
| [38] | László Lempert. Imbedding Cauchy-Riemann manifolds into a sphere. Internat. J. Math., 1(1):91-108, 1990. |
| [39] | László Lempert. Holomorphic invariants, normal forms, and the moduli space of convex domains. Ann. of Math. (2), 128(1):43-78, 1988. |
| [40] | László Lempert. Complex geometry in convex domains. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 759-765, Providence, RI, 1987. Amer. Math. Soc. |
| [41] | L. Lempert. A note on the paper: “Analyticity of the solution of boundary value problems for a selfadjoint ordinary differential equation with polynomial coefficients via gradient method” [Ann.Univ.Sci. Budapest.Eötvös Sect.Math.26 (1983), 77-79; MR0719779 (85i:65102c)] by A. Shamandy and A. El-Nenae. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 29:247 (1987), 1986. |
| [42] | László Lempert. A precise result on the boundary regularity of biholomorphic mappings. Math. Z., 193(4):559-579, 1986. |
| [43] | László Lempert. On the boundary behavior of holomorphic mappings. In Contributions to several complex variables, Aspects Math., E9, pages 193-215. Vieweg, Braunschweig, 1986. |
| [44] | László Lempert. Symmetries and other transformations of the complex Monge-Ampère equation. Duke Math. J., 52(4):869-885, 1985. |
| [45] | László Lempert. Intrinsic distances and holomorphic retracts. In Complex analysis and applications '81 (Varna, 1981), pages 341-364. Publ. House Bulgar. Acad. Sci., Sofia, 1984. |
| [46] | László Lempert. Intrinsic metrics. In Complex analysis of several variables (Madison, Wis., 1982), volume 41 of Proc. Sympos. Pure Math., pages 147-150. Amer. Math. Soc., Providence, RI, 1984. |
| [47] | László Lempert. Solving the degenerate complex Monge-Ampère equation with one concentrated singularity. Math. Ann., 263(4):515-532, 1983. |
| [48] | L. Lempert. Holomorphic retracts and intrinsic metrics in convex domains. Anal. Math., 8(4):257-261, 1982. |
| [49] | László Lempert. Imbedding strictly pseudoconvex domains into a ball. Amer. J. Math., 104(4):901-904, 1982. |
| [50] | László Lempert. La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France, 109(4):427-474, 1981. |
| [51] | László Lempert. Boundary behaviour of meromorphic functions of several variables. Acta Math., 144(1-2):1-25, 1980. |
| [52] | L. Lempert. A note on mapping polydiscs into balls and vice versa. Acta Math. Acad. Sci. Hungar., 34(1-2):117-119, 1979. |
| [53] | L. Lempert. Recursion for orthogonal polynomials on complex domains. In Fourier analysis and approximation theory (Proc. Colloq., Budapest, 1976), Vol. II, volume 19 of Colloq. Math. Soc. János Bolyai, pages 481-494. North-Holland, Amsterdam, 1978. |