Samuel S Wagstaff

Publications listed in MathSciNet

[1] Carlos J. Moreno and Samuel S. Wagstaff, Jr. Sums of squares of integers. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.
[2] Samuel S. Wagstaff, Jr. The Cunningham project. In High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, volume 41 of Fields Inst. Commun., pages 367-378. Amer. Math. Soc., Providence, RI, 2004.
[3] Samuel S. Wagstaff, Jr. Cryptanalysis of number theoretic ciphers. Computational Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2003.
[4] Paul Leyland, Arjen Lenstra, Bruce Dodson, Alec Muffett, and Sam Wagstaff. MPQS with three large primes. In Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages 446-460. Springer, Berlin, 2002.
[5] Samuel S. Wagstaff, Jr. Prime divisors of the Bernoulli and Euler numbers. In Number theory for the millennium, III (Urbana, IL, 2000), pages 357-374. A K Peters, Natick, MA, 2002.
[6] Samuel S. Wagstaff, Jr. Prime numbers with a fixed number of one bits or zero bits in their binary representation. Experiment. Math., 10(2):267-273, 2001.
[7] Samuel S. Wagstaff, Jr. Cryptanalysis. In Algorithms and theory of computation handbook, pages 42-1-42-14. CRC, Boca Raton, FL, 1999.
[8] R.-M. Elkenbracht-Huizing, Peter L. Montgomery, R. D. Silverman, R. K. Wackerbarth, and S. S. Wagstaff, Jr. The number field sieve on many computers. In Number theory (Ottawa, ON, 1996), volume 19 of CRM Proc. Lecture Notes, pages 81-85. Amer. Math. Soc., Providence, RI, 1999.
[9] Samuel S. Wagstaff, Jr. Aurifeuillian factorizations and the period of the Bell numbers modulo a prime. Math. Comp., 65(213):383-391, 1996.
[10] Daniel Shanks and Samuel S. Wagstaff, Jr. 48 more solutions of Martin Davis's quaternary quartic equation. Math. Comp., 64(212):1717-1731, 1995.
[11] Samuel S. Wagstaff, Jr. The period of the Bell exponential integers modulo a prime. In Mathematics of Computation 1943-1993: a half-century of computational mathematics (Vancouver, BC, 1993), volume 48 of Proc. Sympos. Appl. Math., pages 595-598. Amer. Math. Soc., Providence, RI, 1994.
[12] Samuel S. Wagstaff, Jr. Computing Euclid's primes. Bull. Inst. Combin. Appl., 8:23-32, 1993.
[13] Robert D. Silverman and Samuel S. Wagstaff, Jr. A practical analysis of the elliptic curve factoring algorithm. Math. Comp., 61(203):445-462, 1993.
[14] S. S. Wagstaff, Jr. Some uses of microcomputers in number theory research. Comput. Math. Appl., 19(3):53-58, 1990.
[15] Albert A. Mullin. Letter to the editor: “The new Mersenne conjecture” [Amer. Math.Monthly 96 (1989), no.2, 125-128; MR0992073 (90c:11009)] by P.T.Bateman, J.L.Selfridge and S. S.Wagstaff, Jr. Amer. Math. Monthly, 96(6):511, 1989.
[16] P. T. Bateman, J. L. Selfridge, and S. S. Wagstaff, Jr. The new Mersenne conjecture. Amer. Math. Monthly, 96(2):125-128, 1989.
[17] Jonathan W. Tanner and Samuel S. Wagstaff, Jr. New bound for the first case of Fermat's last theorem. Math. Comp., 53(188):743-750, 1989.
[18] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr. Factorizations of bn 1, volume 22 of Contemporary Mathematics. American Mathematical Society, Providence, RI, second edition, 1988. b=2,3,5,6,7,10,11,12 up to high powers.
[19] Samuel S. Wagstaff, Jr. and J. W. Smith. Methods of factoring large integers. In Number theory (New York, 1984-1985), volume 1240 of Lecture Notes in Math., pages 281-303. Springer, Berlin, 1987.
[20] Jonathan W. Tanner and Samuel S. Wagstaff, Jr. New congruences for the Bernoulli numbers. Math. Comp., 48(177):341-350, 1987.
[21] Carl Pomerance, J. W. Smith, and S. S. Wagstaff, Jr. New ideas for factoring large integers. In Advances in cryptology (Santa Barbara, Calif., 1983), pages 81-85. Plenum, New York, 1984.
[22] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr. Factorizations of bn1, volume 22 of Contemporary Mathematics. American Mathematical Society, Providence, R.I., 1983. b=2,3,5,6,7,10,11,12 up to high powers.
[23] J. W. Smith and S. S. Wagstaff, Jr. How to crack an RSA cryptosystem. In Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983), volume 40, pages 367-373, 1983.
[24] Samuel S. Wagstaff, Jr. Divisors of Mersenne numbers. Math. Comp., 40(161):385-397, 1983.
[25] Carl Pomerance and Samuel S. Wagstaff, Jr. Implementation of the continued fraction integer factoring algorithm. Congr. Numer., 37:99-118, 1983.
[26] Samuel S. Wagstaff, Jr. Zeros of p-adic L-functions. II. In Number theory related to Fermat's last theorem (Cambridge, Mass., 1981), volume 26 of Progr. Math., pages 297-308. Birkhäuser Boston, Mass., 1982.
[27] Samuel S. Wagstaff, Jr. Pseudoprimes and a generalization of Artin's conjecture. Acta Arith., 41(2):141-150, 1982.
[28] Samuel S. Wagstaff, Jr. Ramanujan's paper on Bernoulli numbers. J. Indian Math. Soc. (N.S.), 45(1-4):49-65 (1984), 1981.
[29] Samuel S. Wagstaff, Jr. Iterating the product of shifted digits. Fibonacci Quart., 19(4):340-347, 1981.
[30] Samuel S. Wagstaff, Jr. The computational complexity of solving exponential congruences. In Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. II (Winnipeg, Man., 1980), volume 31, pages 275-286, 1981.
[31] Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff, Jr. The pseudoprimes to 25·109. Math. Comp., 35(151):1003-1026, 1980.
[32] Samuel S. Wagstaff, Jr. Large Carmichael numbers. Math. J. Okayama Univ., 22(1):33-41, 1980.
[33] Robert Baillie and Samuel S. Wagstaff, Jr. Lucas pseudoprimes. Math. Comp., 35(152):1391-1417, 1980.
[34] Samuel S. Wagstaff, Jr. p-divisibility of certain sets of Bernoulli numbers. Math. Comp., 34(150):647-649, 1980.
[35] Paul Erdős and Samuel S. Wagstaff, Jr. The fractional parts of the Bernoulli numbers. Illinois J. Math., 24(1):104-112, 1980.
[36] Samuel S. Wagstaff, Jr. Additive h-bases for n. In Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), volume 751 of Lecture Notes in Math., pages 302-327. Springer, Berlin, 1979.
[37] Samuel S. Wagstaff, Jr. Greatest of the least primes in arithmetic progressions having a given modulus. Math. Comp., 33(147):1073-1080, 1979.
[38] Samuel S. Wagstaff, Jr. Some questions about arithmetic progressions. Amer. Math. Monthly, 86(7):579-582, 1979.
[39] Samuel S. Wagstaff, Jr. Solution of Nathanson's exponential congruence. Math. Comp., 33(147):1097-1100, 1979.
[40] Samuel S. Wagstaff, Jr. The least prime in an arithmetic progression with prime difference. J. Reine Angew. Math., 301:114-115, 1978.
[41] Samuel S. Wagstaff, Jr. The irregular primes to 125000. Math. Comp., 32(142):583-591, 1978.
[42] Paul T. Bateman, George B. Purdy, and Samuel S. Wagstaff, Jr. Some numerical results on Fekete polynomials. Math. Comput., 29:7-23, 1975. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday.
[43] Samuel S. Wagstaff, Jr. Zeros of p-adic L-functions. Math. Comp., 29(132):1138-1143, 1975.
[44] Samuel S. Wagstaff, Jr. The Schnirelmann density of the sums of three squares. Proc. Amer. Math. Soc., 52:1-7, 1975.
[45] Samuel S. Wagstaff, Jr. Infinite matroids. Trans. Amer. Math. Soc., 175:141-153, 1973.
[46] Samuel S. Wagstaff, Jr. On k-free sequences of integers. Math. Comp., 26:767-771, 1972.
[47] Samuel S. Wagstaff, Jr. Sequences not containing an infinite arithmetic progression. Proc. Amer. Math. Soc., 36:395-397, 1972.
[48] S. S. Wagstaff, Jr. On sequences of integers with no 4, or no 5 numbers in arithmetical progression. Math. Comp., 21:695-699, 1967.