1) Which of the following statements would not describe the number $\frac{11}{40}$?
$A \quad \frac{11}{40}$ is a rational number.
B $\quad \frac{11}{40}$ is equivalent to 0.275 .
C $\quad \frac{11}{40}$ is a real number.
D $\quad \frac{11}{40}$ is a repeating decimal.
$E \quad \frac{11}{40}$ has a reciprocal of $\frac{40}{11}$.
2) Evaluate the following, if $x=-2$ and $y=3$.

$$
x^{2}+x y-(x+y)
$$

A -3
B -11
C -1
D 1
E None of the above.
3) Find the value of: $\quad-\frac{9}{20}\left(\frac{5}{8}-\frac{5}{6}\right)$

$$
\begin{array}{ll}
A & \frac{21}{32} \\
B & -\frac{21}{32} \\
C & \frac{3}{32} \\
D & 0 \\
E & -\frac{3}{32}
\end{array}
$$

4) Which of the following is(are) equal to 5 ?
I. $\quad|13-18|$
II. $|13|-|18|$
III. $\frac{-45}{-9}$
IV. $-2-(-7)$

A I, II, III, and IV
$B \quad$ I, III, and IV only
$C \quad$ I and III only
D III and IV only
$E \quad$ II, III, and IV only
5) Which statement is false?

$$
\begin{array}{ll}
A & -3(2-x)=3 x-6 \\
B & 5-(2 x+3)=2-2 x \\
C & 3(a+2)-4(a-3)=-a-6 \\
D & 4 x-3 y+2-5 x+12 y+7=-x+9 y+9 \\
E & 4 r-2+3(3-4 r)=7-8 r
\end{array}
$$

6) Solve this equation. $\quad \frac{1}{2}(4 x-5)=2 x+11$

$$
\begin{array}{ll}
A & x=-\frac{22}{5} \\
B & \text { All real numbers } \\
C & x=\frac{7}{2} \\
D & \text { No solution } \\
E & x=0
\end{array}
$$

7) A catalog discount warehouse sells all winter jackets at a markup of 75% above wholesale cost (over wholesale cost) plus a processing/shipping fee of $\$ 8.25$. Robert orders a jacket and is billed $\$ 150$. If w represents the wholesale cost of the jacket, which equation could be used to find w ?

$$
\begin{array}{ll}
A & w+0.75 w+8.25=150 \\
B & 0.75 w+8.25=150 \\
C & 150+0.75 w+8.25=w \\
D & w=0.75(150)+8.25 \\
E & w+0.75 w=150+8.25
\end{array}
$$

8) The three angles in a triangle are represented below using the variable x. Find the measure of the angle with the largest measure? What is true about the measure?

A It is less than 70°.
$B \quad$ It is at least 70°, but less than 75°.
C It is at least 75°, but less than 80°.
$D \quad$ It is at least 80°, but less than 85°.

$E \quad$ It is at least 85°.
9) Baseball analysts use the formula $r=0.3 b-0.6 c$ to estimate the number of runs r due to stolen bases for a runner who stole b bases and was caught stealing bases c times. Joseph Lei stole 12 bases and was caught stealing bases 2 times. Which describes how many runs he was credited according to this data? Round your answer to the nearest tenth of a run.

A Less than 1 run.
$B \quad$ At least 1 run, but less than 2 runs.
$C \quad$ At least 2 runs, but less than 3 runs.
$D \quad$ At least 3 runs, but less than 4 runs.
$E \quad$ At least 4 runs.
10) Simplify the exponential expression. Do not leave your answer with zero or negative exponents.

$$
\frac{2 m\left(m^{3} n\right)^{-2}}{m^{-3} n^{2}}
$$

A $2 m^{10}$
B $\frac{2}{m^{8}}$
C $\frac{2}{m^{8} n^{4}}$
D $\frac{2 m^{2}}{n^{4}}$
E $\frac{2}{m^{2} n^{4}}$
11) Find the quotient below, using scientific notation. Write your answer in scientific notation to the correct number of significant digits.

$$
\frac{45,000,000}{0.025}
$$

A $\quad 5.6 \times 10^{4}$
B $\quad 1.8 \times 10^{5}$
C 0.18×10^{9}
D $\quad 5.6 \times 10^{9}$
$E \quad$ None of the above.
12) Which of the following equation(s) is(are) paired with a correct solution that could be represented by an ordered pair (point) on a rectangular system graph?

$$
\begin{array}{lll}
\text { I } & 3 x+2 y=8, & (4,-2) \\
\text { II } & y=|x|+5, & (-2,3) \\
\text { III } & y=(x-1)^{2}, & (4,9)
\end{array}
$$

$A \quad$ None of them.
$B \quad$ I, II, and III
C I and II only
$D \quad$ I and III only
$E \quad$ I only
13) If $f(x)=3 x+2$, find $f(a+1)$.

$$
\begin{array}{ll}
A & a+3 \\
B & 3 a+3 \\
C & a+6 \\
D & 3 a+5 \\
E & 3 a+2
\end{array}
$$

14) Evaluate: $2^{-1}+3^{0}$

$$
\begin{array}{cc}
A & -1 \\
B & \frac{3}{2} \\
C & 1 \\
D & \frac{7}{2} \\
E & -2
\end{array}
$$

15) Using the graph below, which statement is false?

$A \quad$ The value of $f(-1)$ is -1 .
$B \quad$ The domain of the function is $\{x \mid-3 \leq x \leq 3\}$.
$C \quad$ When $x=-2$, the value of the function is 0 .
$D \quad$ The graph represents a function.
$E \quad$ The ordered pair $(-3,7)$ is found on the graph.
