1) Which linear equation(s) is(are) matched with a correct slope?

I line with equation $4 x-3 y=24$, slope is $\frac{4}{3}$
II line graphed at the right, slope is $-\frac{3}{2}$
III line with equation $y=2$, slope is 0

A I and II only
B I only

C II and III only
D III only
$E \quad$ I and III only
2) Which of the following systems is matched with a correct solution?
A $\begin{aligned} 3 x+3 y & =-3 \\ x-y & =1\end{aligned}$,
$(2,-3)$
B $\quad \begin{aligned} 3 x+y & =2 \\ 5 x+y & =0\end{aligned}, \quad(-1,5)$
C $\quad \begin{gathered}4 x-10 y=22 \\ x-3 y=-5\end{gathered}$,
D $\quad \begin{aligned} & 6 x-4 y=2 \\ & 9 x-y=10\end{aligned}, \quad(1,-1)$
$E \quad$ None have a correct solution.
3) Find the equation of a line (in slope-intercept form) with slope $\frac{1}{7}$ and point $(-5,2)$.

A $y=\frac{1}{7} x+2$
B $y=\frac{3}{2} x+4$
C $y=7 x+37$
D $y=7 x+4$
E $y=\frac{1}{7} x+\frac{19}{7}$
4) Which is the graph of the line $3 x-2 y=6$?

D

B

C

E

5) Which of the following lines is perpendicular to the line containing points $(4,3)$ and $(-2,5)$?

A $y=3 x+2$
B $y=-\frac{1}{3} x+12$
C $y=x+4$
D $y=\frac{1}{3} x-5$
E $y=-3 x$
6) If $F(x)=-3 x-5$ and $G(x)=x^{2}-3 x$, find $(F \cdot G)(-2)$.

A $\quad-10$
B 2
C $\quad-110$
D 10
$E \quad$ None of the above.
7) What is the equation of a line with the points $(0,6)$ and $(-4,0)$?

A $y=\frac{3}{2} x+6$
B $y=\frac{3}{2} x-4$
C $y=\frac{2}{3} x+6$
D $y=-\frac{3}{2} x-4$
E $y=-\frac{3}{2} x+6$
8) Find the value of a in the solution of this system.

$$
\begin{aligned}
& 6 a+2 b=20 \\
& 3 a-6 b=3
\end{aligned}
$$

$$
\begin{array}{ll}
A & a=\frac{3}{7} \\
B & a=3 \\
C & a=\frac{19}{5} \\
D & a=\frac{19}{7} \\
E & a=1
\end{array}
$$

9) Find the solution to the system below by graphing each line.

In which quadrant is the solution found?

$$
\begin{aligned}
& x=2 y+4 \\
& 4 x+2 y=-14
\end{aligned}
$$

A	I
B	II
C	III
D	IV
E	None. The solution lies on an axis.

10) A chemist must make 20 liters of a 35% acid solution. She only has available some 40% acid and some 20% acid solution. Using a system of equations of 2 variables, determine how much of the 20% acid solution should be used?

A 5 liters
B 10 liters
C 3 liters
D 15 liters
E 8 liters
11) The value of an office machine can be determined by $V(t)=-150 t+1325$, where t is the number of years after purchase and $V(t)$ is the value (in dollars) for t years after purchase. In how many years after purchase will the machine be worthless (value of $\$ 0$)? Which statement describes this number of years?
A Less than 4 years
B Between 4 and 6 years
$C \quad$ Between 6 and 8 years
$D \quad$ Between 8 and 10 years
$E \quad$ More than 10 years
12) Determine an indicated point and the slope of the line with the equation $y-3=\frac{5}{4}(x+8)$.

A $(8,-3)$, slope $:-\frac{5}{4}$
B $\quad(-8,3), \quad$ slope $: \frac{5}{4}$
C $(-8,-3)$, slope : $\frac{4}{5}$
D (3,-8), slope: $\frac{5}{4}$
E $\quad(-8,3)$, slope $:-\frac{5}{4}$
13) The sum of two integers is 2 . If the largest integer is doubled, the result is 22 more than the smaller integer. Let L represent the larger integer and s represent the smaller integer. Which system of equations could be used to find both integers?
A $\begin{aligned} L+s & =2 \\ 2 L+s & =22\end{aligned}$
B $\quad L+s=2$
$L=2 s+22$
C $\begin{gathered}L+s=2 \\ 2 L=s+22\end{gathered}$
D $\begin{aligned} & L+s=22 \\ & 2 L=s+2\end{aligned}$

$$
\text { E } \begin{aligned}
L & =s+2 \\
2 L & =s+22
\end{aligned}
$$

14) Solve the system of equations below and select the true statement(s).

$$
\begin{aligned}
& 3 x+6 y=-10 \\
& x=-2 y-5
\end{aligned}
$$

I There are infinitely many solutions.
II There is no solution.
III The system is inconsistent.
A I only
B II and III only
$C \quad$ I and II only
$D \quad$ II only
E I and III only
15) Which of the following statements is true given the equation $x=-\frac{4}{3}$.
$A \quad$ Its graph is a horizontal line.
B The point $(0,0)$ is on the graph of the line.
$C \quad$ The line has a y-intercept at $\left(0,-\frac{4}{3}\right)$.
$D \quad$ The line has undefined slope.
$E \quad$ None of the above.

