1) Solve the inequality below. Write the solution using interval notation.

$$
-3(x+4)+2 \geq 7-x
$$

A $\quad\left(-\infty, \frac{7}{2}\right]$
B $\quad\left[-\frac{17}{2}, \infty\right)$
C $\quad\left(-\infty, \frac{17}{2}\right]$
D $\left(\frac{7}{2}, \infty\right)$
E $\quad\left(-\infty,-\frac{17}{2}\right]$
2) Solve $|2 x-16|-22=-6 \quad$ Which statement describes the solution(s)?
$A \quad$ There is no solution.
$B \quad$ There are two solutions; one positive, the other zero.
C There is only one solution; it is positive.
$D \quad$ There are two positive solutions.
$E \quad$ There is only one solution; it is zero.
3) Let $f(x)=\left|\frac{1}{2} x-4\right|$. Find all values for which $f(x) \leq 5$.

A $\{x \mid-2 \leq x \leq 18\}$
B $\quad\left\{x \left\lvert\,-\frac{1}{2} \leq x \leq \frac{9}{2}\right.\right\}$
C $\quad\{x \mid-1 \leq x \leq 9\}$
D $\quad\{x \mid x \leq-2$ or $x \geq 18\}$
E $\quad\left\{x \left\lvert\, x \leq-\frac{1}{2}\right.\right.$ or $\left.x \geq \frac{9}{2}\right\}$
4) Subtract: $\left(-6 m^{2}-8 m+5\right)-\left(7 m-5 m^{2}-8\right)$

$$
\begin{array}{ll}
A & -m^{2}-15 m-3 \\
B & -m^{2}-15 m+13 \\
C & -11 m^{2}-15 m-3 \\
D & -11 m^{2}-m-3 \\
E & \text { None of the above. }
\end{array}
$$

5) Which of the following is(are) false?

$$
\begin{array}{ll}
\text { I } & \left(a^{3} b^{2}-11\right)\left(a^{3} b^{2}+11\right)=a^{9} b^{4}-121 \\
\text { II } & (m n+3 y)^{2}=m^{2} n^{2}+9 y^{2} \\
\text { III } & \left(r+\frac{1}{2}\right)(2 r-4)=2 r^{2}-3 r-2
\end{array}
$$

A All are false.
$B \quad$ II only
C I and II only
$D \quad$ I only
$E \quad$ II and III only
6) Which is one factor of $6 a x+a+12 b x+2 b$?

$$
\begin{array}{ll}
A & (a-2 b) \\
B & (6 x-1) \\
C & (a+1) \\
D & (6 x-b) \\
E & (6 x+1)
\end{array}
$$

7) Which is one of the factors of $20 x^{2}-7 x-6$?

A	$(5 x-2)$
B	$(4 x-3)$
C	$(5 x+3)$
D	$(4 x+3)$
E	$(x+2)$

8) Factor completely: $27 x^{3} y-300 x y$

$$
\begin{array}{ll}
A & 3 x y(3 x-10)^{2} \\
B & 3 x\left(9 x^{2} y-100 y\right) \\
C & 3 x y(3 x+10)^{2} \\
D & 3 x y(3 x+10)(3 x-10) \\
E & x y\left(27 x^{2}-300\right)
\end{array}
$$

9) Solve $2 x^{2}-3=-x$. One solution is:

$$
\begin{array}{ll}
A & x=-\frac{3}{2} \\
B & x=-1 \\
C & x=-\frac{2}{3} \\
D & x=\frac{3}{2} \\
E & x=3
\end{array}
$$

10) A garden has an area of 60 square feet. Its length is 4 feet more than its width. What statement is true about its length?
$A \quad$ The length of the garden is less than 5 feet.
$B \quad$ The length of the garden is between 5 and 8 feet.
$C \quad$ The length of the garden is between 8 and 11 feet.
$D \quad$ The length of the garden is between 11 and 14 feet.
$E \quad$ The length of the garden is more than 14 feet.
11) Multiply: $\frac{a^{2}+a b+2 a+2 b}{a^{2}+4 a+4} \cdot \frac{a^{2}+2 a}{a^{2}-b^{2}} \quad$ Write answer in simplest form.

Hint: For the first numerator, factor by grouping by pairs.
A $\frac{a}{a-b}$
B $\frac{a(a b+2 a+2 b)}{-2 b^{2}(a+1)}$
C $\frac{a+b}{(a-b)^{2}}$
$D \frac{(a+b)\left(a^{2}+2 a\right)}{(a+2)(a-b)}$
$E \quad \frac{a-2}{a-b}$
12) Subtract: $\frac{2}{y}-\frac{1}{y+4} \quad$ Simplify, if possible.

A $\frac{1}{y(y+4)}$
B $\frac{8}{y+4}$
C $\frac{y+8}{y(y+4)}$
D $\frac{7}{y+4}$
E $\frac{1}{y}$
13) Which statement describes the solution of the equation?

$$
\frac{25}{y-2}-\frac{8}{y}=\frac{15}{y}
$$

$A \quad$ The solution is less than -20.
$B \quad$ The solution is between -20 and -10 .
$C \quad$ The solution is between -10 and 5 .
$D \quad$ The solution is between 5 and 15 .
$E \quad$ The solution is greater than 15 .
14) Alone it takes Mike 4 more hours than Randy to split a cord of wood. Randy can split a cord of wood in 2 hours alone. How long would it take them together to split a cord of wood?

A 1 hour
B $1 \frac{2}{3}$ hours
C $1 \frac{1}{3}$ hours
D $\quad \frac{1}{2}$ hour
E $1 \frac{1}{2}$ hours
15) The value of y varies inversely as the value of x. The value of y is 5 when $x=2$. Find the equation of variation and find the value of y when x is 3 .
$A \quad y=\frac{5}{2 x}, \quad y=\frac{5}{6}$
B $y=\frac{5}{2} x, \quad y=\frac{15}{2}$
C $y=\frac{10}{x}, y=\frac{10}{3}$
D $y=10 x, \quad y=30$
E $y=\frac{2}{5 x}, \quad y=\frac{2}{15}$

