$$
\begin{gathered}
\text { MA } 15400 \\
\text { Spring } 2013 \\
\text { Exam } 1
\end{gathered}
$$

```
PYTHAGOREAN IDENTITIES:
    \mp@subsup{\operatorname{sin}}{}{2}0+\mp@subsup{\operatorname{cos}}{}{2}0=1
    1+\mp@subsup{\operatorname{tan}}{}{2}0=\mp@subsup{\operatorname{sec}}{}{2}0
    1+\mp@subsup{\operatorname{cot}}{}{2}}0=\mp@subsup{\operatorname{csc}}{}{2}
```


Lessons 1-12, Sections 6.1, 6.2, 6.3, 6.4, 6.5, and 6.7 up to questions \#31

1. Express $\theta=3.25$ radians in terms of degrees, minutes, and seconds, to the nearest second.
A. $186^{\circ} 21^{\prime} 13^{\prime \prime}$
B. $186^{\circ} 12^{\prime} 41^{\prime \prime}$
C. $186^{\circ} 13^{\prime} 41^{\prime \prime}$
D. $186^{\circ} 13^{\prime} 40^{\prime \prime}$
E. None of the above
2. Find the length of the arc of the colored sector. Round to the nearest tenth.

A. 35.6 cm
B. 41.2 cm
C. 39.8 cm
D. 45.6 cm
E. None of the above
3. Find the perimeter of triangle ABC with $\gamma=90^{\circ}, \beta=51^{\circ}$, and side $a=5$. Round to one decimal place.
A. 22.9
B. 15.5
C. 18.6
D. 19.1
E. None of the above

Lessons 1-12, Sections 6.1, 6.2, 6.3, 6.4, 6.5, and 6.7 up to questions \#31
4. Find the exact value of $\csc (\theta)$ if θ is in standard position and the terminal side of θ is in quadrant IV and on the line $2 x+7 y=0$.
A. $\csc (\theta)=\frac{-\sqrt{53}}{7}$
B. $\csc (\theta)=\frac{\sqrt{53}}{7}$
C. $\csc (\theta)=\frac{-\sqrt{53}}{2}$
D. $\csc (\theta)=\frac{\sqrt{53}}{2}$
E. None of the above
5. Find the quadrant containing θ if the given conditions are true.
$\cos (\theta)>0$ and $\sin (\theta)<0$
A. $Q I$
B. $Q I I$
C. QIII
D. QIV

Lessons 1-12, Sections 6.1, 6.2, 6.3, 6.4, 6.5, and 6.7 up to questions \#31
6. Let P be the point that corresponds to the intersection of the terminal side of angle t and the unit circle. Find $\cos (t)$ if $t=\frac{17 \pi}{3}$.
A. $\cos (t)=\frac{1}{2}$
B. $\cos (t)=\frac{\sqrt{3}}{2}$
C. $\cos (t)=\frac{-1}{2}$
D. $\cos (t)=\frac{-\sqrt{3}}{2}$
E. None of the above
7. Let P be the point that corresponds to the intersection of the terminal side of angle t and the unit circle. If $P(t)=\left(\frac{-15}{17}, \frac{8}{17}\right)$ find $P(-t+\pi)$.
A. $\left(\frac{-15}{17}, \frac{-8}{17}\right)$
B. $\left(\frac{15}{17}, \frac{-8}{17}\right)$
C. $\left(\frac{-15}{17}, \frac{8}{17}\right)$
D. $\left(\frac{15}{17}, \frac{8}{17}\right)$
E. None of the above

Lessons 1-12, Sections 6.1, 6.2, 6.3, 6.4, 6.5, and 6.7 up to questions \#31
8. Which of the following is equivalent to $\frac{\cot x+\tan x}{\cot x}$?
A. $\sin ^{2} x$
B. $\cos ^{2} x$
C. $\sec ^{2} x$
D. $\csc ^{2} x$
E. 1
9. using the graph of the $\csc (x)$ function, complete the following

A. ∞
B. -1
C. $-\infty$
D. 1
E. Undefined
10. Find the reference angle, θ_{R}, if $\theta=52.1$. Round your answer to the nearest 0.01 radian.
A. 1.41
B. 1.31
C. 1.21
D. 1.51
E. None of the above

Lessons 1-12, Sections 6.1, 6.2, 6.3, 6.4, 6.5, and 6.7 up to questions \#31
11. Approximate, to the nearest 0.1°, all angles θ in the interval $\left[0^{\circ}, 360^{\circ}\right)$ that satisfy the equation $\cot \theta=2.3456$
A. $16.1^{\circ}, 196.1^{\circ}$
B. $156.9^{\circ}, 336.9^{\circ}$
C. $23.1^{\circ}, 203.1^{\circ}$
D. $163.9^{\circ}, 343.9^{\circ}$
E. None of the above
12. Approximate, to the nearest 0.01 radian, all angles θ in the interval $[0,2 \pi)$ that satisfy the equation $\sin \theta=-0.8765$.
A. $4.21,5.21$
B. $2.07,4.21$
C. $4.55,4.87$
D. $1.73,4.55$
E. None of the above
13. Find the period and the phase shift $y=5 \sin \left(2 x-\frac{\pi}{3}\right)$
A. Period $=2 \pi$, Phase Shift $=\frac{\pi}{6}$
B. Period $=4 \pi$, Phase Shift $=2 \pi$
C. Period $=2 \pi$, Phase Shift $=-2 \pi$
D. Period $=4 \pi$, Phase Shift $=\frac{-\pi}{6}$
E. None of the above

Lessons 1-12, Sections 6.1, 6.2, 6.3, 6.4, 6.5, and 6.7 up to questions \#31
14. Write the equation in the form $y=a \sin (b x+c)$ for $a>0, b>0$, and the least positive real number c.

A. $y=5 \sin \left(\frac{1}{2} x+\pi\right)$
B. $y=5 \sin \left(2 x+\frac{\pi}{2}\right)$
C. $y=5 \sin \left(\frac{1}{2} x+\frac{\pi}{2}\right)$
D. $y=5 \sin (2 x+\pi)$
15. From a point 135 meters above level ground, a surveyor measures the angle of depression of an object on the ground at 61°. Approximate the distance from the object to the point on the ground directly beneath the surveyor. Round your answer to the nearest meter.

[Warning: Check the mode on your calculator!]

A. 80 meters
B. 244 meters
C. 262 meters
D. 75 meters
E. None of the above

Lessons 1-12, Sections 6.1, 6.2, 6.3, 6.4, 6.5, and 6.7 up to questions \#31

	Exam 1 Answers
1.	B
2.	A
3.	D
4.	C
5.	D
6.	A
7.	D
8.	C
9.	A
10.	B
11.	C
12.	A
13.	E
14.	B
15.	D

