$$
\begin{gathered}
\text { MA } 15400 \\
\text { Spring } 2014 \\
\text { Exam } 1
\end{gathered}
$$

[^0]

Lessons 1-11, All of Sections 6.1, 6.2, 6.3, 6.4, 6.5.

1. Find the angle that is supplementary to $48^{\circ} 57^{\prime} 9^{\prime \prime}$
A. $131^{\circ} 2^{\prime} 51^{\prime \prime}$
B. $41^{\circ} 52^{\prime} 41^{\prime \prime}$
C. $41^{\circ} 2^{\prime} 51^{\prime \prime}$
D. $131^{\circ} 52^{\prime} 41^{\prime \prime}$
E. None of the above
2. Express the angle $153^{\circ} 8^{\prime} 36^{\prime \prime}$ as a decimal, to the nearest ten-thousandth of an angle.
A. 153.6022°
B. 153.1433°
C. 153.4383°
D. 153.7667°
E. None of the above
3. If a circular arc of the given length $s=5.2 \mathrm{~km}$ subtends the central angle $\theta=76^{\circ}$ on a circle, find the radius of the circle. Round your answer to the nearest hundredth.
A. 9.95 km
B. 3.17 km
C. 12.32 km
D. 3.92 km
E. None of the above

Lessons 1-11, All of Sections 6.1, 6.2, 6.3, 6.4, 6.5.
4. A pendulum in a grandfather clock is 5.2 feet long and swings back and forth along a 7 -inch arc. Approximate the angle through which the pendulum passes during one swing. Round your answer to the nearest tenth of a degree. (1 foot $=12$ inches)
A. 6.4°
B. 6.6°
C. 6.2°
D. 6.8°
E. None of the above
5. Which one of the following statements is true for the given triangle?

A. $\sec \theta=\frac{\sqrt{a^{2}+b^{2}}}{a}$
B. $\csc \theta=\frac{\sqrt{a^{2}+b^{2}}}{b}$
C. $\cos \theta=\frac{b}{\sqrt{a^{2}+b^{2}}}$
D. $\sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}}$
E. More than one of the above answers are correct.
6. Find the quadrant containing θ if $\sec \theta>0$ and $\tan \theta<0$.
A. I
B. II
C. III
D. $I V$
E. None of the above

Lessons 1-11, All of Sections 6.1, 6.2, 6.3, 6.4, 6.5.
7. Find the exact value of $\sin (\theta)$ if θ is in standard position and the terminal side of θ is in $Q I V$ and is parallel to the line through $A(6,2)$ and $B(1,8)$.
A. $\frac{-6}{\sqrt{61}}$
B. $\frac{5}{\sqrt{61}}$
C. $\frac{-5}{\sqrt{61}}$
D. $\frac{6}{\sqrt{61}}$
8. Let $P(t)$ be the point on the unit circle U that corresponds to t.

If $P(t)=\left(\frac{5}{13}, \frac{-12}{13}\right)$, find $P(-t+\pi)$
A. $\left(\frac{5}{13}, \frac{-12}{13}\right)$
B. $\left(\frac{-5}{13}, \frac{-12}{13}\right)$
C. $\left(\frac{-5}{13}, \frac{12}{13}\right)$
D. $\left(\frac{5}{13}, \frac{12}{13}\right)$
E. None of the above
9. Find the exact value of $\sec \left(\frac{-13 \pi}{2}\right)$
A. -2
B. 1
C. 0
D. -1
E. None of the above

Lessons 1-11, All of Sections 6.1, 6.2, 6.3, 6.4, 6.5.
10. Use the graph to complete the statement: As $x \rightarrow \pi^{-}, \cot (x) \rightarrow$

A. $-\infty$
B. 0
C. 1
D. ∞
E. None of the above
11. Find the reference angle θ_{R} if $\theta=\frac{5 \pi}{3}$
A. $\theta_{R}=\frac{2 \pi}{3}$
B. $\theta_{R}=\frac{-\pi}{3}$
C. $\theta_{R}=\frac{4 \pi}{3}$
D. $\theta_{R}=\frac{\pi}{3}$
E. None of the above
12. Find the exact value of $\cos \left(\frac{11 \pi}{6}\right)$.
A. $\frac{-1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{-\sqrt{3}}{2}$
E. None of the above

Lessons 1-11, All of Sections 6.1, 6.2, 6.3, 6.4, 6.5.
13. Approximate, to the nearest 0.1°, all angles θ in the interval $\left[0^{\circ}, 360^{\circ}\right)$ that satisfy the equation $\sec \theta=4.5387$.
A. $\theta=77.3^{\circ}, 102.7^{\circ}$
B. $\theta=12.7^{\circ}, 167.3^{\circ}$
C. $\theta=77.3^{\circ}, 282.7^{\circ}$
D. $\theta=12.7^{\circ}, 347.3^{\circ}$
E. None of the above
14. Approximate, to the nearest 0.0001 radians, all angles θ in the interval $[0,2 \pi)$ that satisfy equation $\tan \theta=-1.0383$.
A. $\theta=2.3374,3.9458$
B. $\theta=0.8042,3.9458$
C. $\theta=0.8042,5.4790$
D. $\theta=2.3374,5.4790$
E. None of the above

Use the graph of the sine function to answer Questions 15, 16, and 17.

15. Find the amplitude
A. 6
B. -12
C. 12
C. 20
D. 5
D. -20

Lessons 1-11, All of Sections 6.1, 6.2, 6.3, 6.4, 6.5.

Question	Answers	
1.	A	$131{ }^{\circ} 2^{\prime} 51{ }^{\prime \prime}$
2.	B	153.1433°
3.	D	3.92 km
4.	A	$6.4{ }^{\circ}$
5.	C	$\cos \theta=\frac{b}{\sqrt{a^{2}+b^{2}}}$
6.	D	IV
7.	A	$\frac{-6}{\sqrt{61}}$
8.	B	$\left(\frac{-5}{13}, \frac{-12}{13}\right)$
9.	E	Undefined
10.	A	$-\infty$
11.	D	$\theta_{R}=\frac{\pi}{3}$
12.	B	$\frac{\sqrt{3}}{2}$
13.	C	$\theta=77.3^{\circ}, 282.7^{\circ}$
14.	D	$\theta=2.3374,5.4790$
15.	A	6
16.	C	20
17.	B	-15

[^0]: PYTHAGOREAN IDENTITIES:

 $$
 \begin{aligned}
 & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
 & 1+\tan ^{2} \theta=\sec ^{2} \theta \\
 & 1+\cot ^{2} \theta=\csc ^{2} \theta
 \end{aligned}
 $$

