MA 15400

Fall 2014

Exam 2

Lessons 12-20, Covers Sections 6.7, 7.2, 7.3, and 7.4

1. Given $\triangle A B C$ with $\gamma=90^{\circ}, \alpha=30^{\circ}$, and $b=15$, find the exact value of side a.
A. $15 \sqrt{3}$
B. $10 \sqrt{3}$
C. $\frac{5}{\sqrt{3}}$
D. $\frac{15}{2}$
E. $5 \sqrt{3}$
2. Given $\triangle A B C$ with $\gamma=90^{\circ}$, angle $\alpha=21^{\circ}$, and side $b=8.6$, approximate the perimeter of the triangle to the nearest tenth.
A. $\quad 17.4$
B. 21.1
C. 19.9
D. 18.1
E. $\quad 23.6$
3. Given the indicated parts of $\triangle A B C$ with $\gamma=90^{\circ}$, express the third part in terms of the first two.

$$
a, \beta ; \quad c
$$

A. $c=a \tan \beta$
B. $c=a \csc \beta$
C. $c=a \sec \beta$
D. $c=a \cos \beta$
E. $c=a \sin \beta$
4. From a distance of 1 mile on level ground, a certain tower has an angle of elevation of 8°. Determine its height to the nearest foot. $(1$ mile $=5280$ feet $)$
A. 742 feet
B. 836 feet
C. 734 feet
D. 826 feet
E. None of the above
5. A ladder, 30 feet long, leans against the side of a building, and the angle between the ladder and the building is 16°.

If the distance from the bottom of the ladder to the building is increase by 3.0 feet, approximate the angle the ladder now makes with the building to the nearest 0.1°.
A. 10.1°
B. 10.5°
C. 22.1°
D. 21.7°
E. None of the above

Questions 6 and 7. The following is a love story of two ships that do not pass in the night.
A ship leave port at $2: 00 \mathrm{pm}$ and sails in the direction $\mathrm{N} 41^{\circ} \mathrm{E}$ at a rate of 37 mph . Another ship leaves the same port at the same time and sails in the direction $\mathrm{N} 49^{\circ} \mathrm{W}$ at a rate of 20 mph .
6. To the nearest whole mile, approximately how far apart are the ships at 6:00 pm ?
A. 136 miles
B. 126 miles
C. 175 miles
D. 168 miles
E. None of the above
7. What is the bearing, to the nearest degree, from the first ship to the second?
A. $\quad S 78^{\circ} W$
B. $S 66^{\circ} W$
C. $S 69^{\circ} W$
D. $S 13^{\circ} \mathrm{W}$
E. None of the above

Lessons 12-20, Covers Sections 6.7, 7.2, 7.3, and 7.4
8. Find all solutions of the equation using n as an arbitrary integer.

$$
\tan \theta=-\sqrt{3}
$$

A. $\quad \theta=\frac{2 \pi}{3}+\pi n$
B. $\theta=\frac{\pi}{3}+2 \pi n$
C. $\theta=\frac{2 \pi}{3}+2 \pi n$
D. $\theta=\frac{\pi}{3}+\pi n$
E. None of the above
9. Find all solutions of the equation using n as an arbitrary integer.

$$
\sin (2 x)=\frac{\sqrt{3}}{2}
$$

A. $\quad \theta=\frac{\pi}{8}+\pi n, \frac{3 \pi}{8}+\pi n$
B. $\quad \theta=\frac{\pi}{6}+\pi n, \frac{\pi}{3}+\pi n$
C. $\theta=\frac{2 \pi}{3}+\pi n, \frac{5 \pi}{6}+\pi n$
D. $\theta=\frac{\pi}{6}+\pi n, \frac{5 \pi}{6}+\pi n$
E. None of the above

Lessons 12-20, Covers Sections 6.7, 7.2, 7.3, and 7.4
10. Find all solutions of the equation in the interval $[0,2 \pi)$

$$
\cos \left(2 x-\frac{\pi}{4}\right)=0
$$

A. $\quad \theta=\frac{5 \pi}{24}, \frac{17 \pi}{24}, \frac{29 \pi}{24}, \frac{41 \pi}{24}$
B. $\theta=\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \frac{13 \pi}{8}$
C. $\theta=\frac{7 \pi}{24}, \frac{19 \pi}{24}, \frac{31 \pi}{24}, \frac{43 \pi}{24}$
D. $\quad \theta=\frac{3 \pi}{8}, \frac{7 \pi}{8}, \frac{11 \pi}{8}, \frac{15 \pi}{8}$
E. None of the above
11. Find all solutions of the equation in the interval $[0,2 \pi)$

$$
2 \sin ^{2} \theta-3 \sin \theta+1=0
$$

A. $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
B. $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{\pi}{2}$
C. $\quad \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{\pi}{2}$
D. $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{3 \pi}{2}$
E. None of the above

Lessons 12-20, Covers Sections 6.7, 7.2, 7.3, and 7.4
12. Express as a trigonometric function of one angle.

$$
\sin \left(35^{\circ}\right) \cos \left(15^{\circ}\right)-\cos \left(35^{\circ}\right) \sin \left(15^{\circ}\right)
$$

A. $\cos \left(50^{\circ}\right)$
B. $\sin \left(20^{\circ}\right)$
C. $\cos \left(20^{\circ}\right)$
D. $\sin \left(50^{\circ}\right)$
E. None of the above
13. Find all solutions of the equation in the interval $[0,2 \pi)$.

$$
\sin t-\sin 2 t=0
$$

A. $\quad t=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
B. $t=0, \pi, \frac{\pi}{3}, \frac{5 \pi}{3}$
C. $t=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{3}, \frac{5 \pi}{3}$
D. $t=0, \pi, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
E. None of the above

Lessons 12-20, Covers Sections 6.7, 7.2, 7.3, and 7.4
14. If $\sin \alpha=\frac{-4}{5}$ and $\cos \beta=\frac{7}{25}$, for a third-quadrant angle α and a first-quadrant angle β, find $\cos (\alpha+\beta)$.
A. $\frac{-4}{5}$
B. $\frac{-117}{125}$
C. $\frac{44}{125}$
D. $\frac{3}{5}$
E. None of the above
15. Find the exact value of $\cos 2 \theta$ if $\tan \theta=\frac{-5}{6}$ and $270^{\circ}<\theta<360^{\circ}$
A. $\frac{-11}{61}$
B. $\frac{-60}{61}$
C. $\frac{5}{61}$
D. $\frac{60}{61}$
E. None of the above

Lessons 12-20, Covers Sections 6.7, 7.2, 7.3, and 7.4

Question	Answers	Letters
1.	$5 \sqrt{3}$	E
2.	21.1	B
3.	$c=a \sec \beta$	C
4.	742 feet	A
5.	22.1°	C
6.	168 miles	D
7.	$S 69^{\circ} W$	C
8.	$\theta=\frac{2 \pi}{3}+\pi n$	A
9.	$\theta=\frac{\pi}{6}+\pi n, \frac{\pi}{3}+\pi n$	B
10.	$\theta=\frac{3 \pi}{8}, \frac{7 \pi}{8}, \frac{11 \pi}{8}, \frac{15 \pi}{8}$	D
11.	$\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{\pi}{2}$	C
12.	$\sin \left(20^{\circ}\right)$	B
13.	$t=0, \pi, \frac{\pi}{3}, \frac{5 \pi}{3}$	B
14.	$\frac{3}{5}$	D
15.	$\frac{11}{61}$	E

