MA 15400 Spring 2014 Exam 2

$$
\begin{array}{|l}
\sin (u+v)=\sin u \cos v+\cos u \sin v \\
\cos (u+v)=\cos u \cos v-\sin u \sin v \\
\tan (u+v)=\frac{\tan u+\tan v}{1-\tan u \tan v} \\
\sin (2 u)=2 \sin u \cos u \\
\cos (2 u)=\cos ^{2} u-\sin ^{2} u \\
\cos (u-v)=\cos u \cos v+\sin u \sin v \\
\sin \theta+\cos ^{2} \theta=1
\end{array}
$$

Lesson 12-20, All of Sections 6.7, 7.2, 7.3, and 7.4

1. Given $\triangle A B C$ with $\gamma=90^{\circ}, \alpha=60^{\circ}$, and $c=14$, find the exact value of side a.
A. $7 \sqrt{3}$
B. $\frac{7}{2}$
C. $\frac{7}{\sqrt{3}}$
D. 7
E. None of the above
2. Given $\triangle A B C$ with $\gamma=90^{\circ}, c=8.1$, and $b=2.8$, approximate angle α to the nearest tenth of a degree.
A. 19.1°
B. 70.9°
C. 20.2°
D. 69.8°
E. None of the above
3. Given the indicated parts of $\triangle A B C$ with $\gamma=90^{\circ}$, express the third part in terms of the first two.

$$
b, \beta ; \quad c
$$

A. $c=b \tan \beta$
B. $c=b \csc \beta$
C. $c=b \sec \beta$
D. $c=b \cos \beta$
E. $c=b \sin \beta$
4. A builder wishes to construct a ramp 39 feet long that rises to a height of 8.9 feet above the level ground. Approximate the angle that the ramp should make with the horizontal to the nearest tenth of a degree.
A. 13.5°
B. 12.9°
C. 12.6°
D. 13.8°
E. None of the above
5. A ladder, 27 feet long, leans against the side of a building, and the angle between the ladder and the building is 36°.

If the distance from the bottom of the ladder to the building is increase by 2.0 feet, approximately how far does the top of the ladder move down the building? Round your answer to one decimal place.
A. 1.0 feet
B. 1.4 feet
C. 1.6 feet
D. 1.2 feet
E. None of the above
6. Find all solutions of the equation using n as an arbitrary integer: $\sec \theta=\sqrt{2}$
A. $\theta=\frac{\pi}{3}+2 \pi n, \theta=\frac{5 \pi}{3}+2 \pi n$
B. $\theta=\frac{\pi}{4}+2 \pi n, \theta=\frac{3 \pi}{4}+2 \pi n$
C. $\theta=\frac{\pi}{3}+\pi n, \theta=\frac{2 \pi}{3}+\pi n$
D. $\theta=\frac{\pi}{4}+2 \pi n, \theta=\frac{7 \pi}{4}+2 \pi n$
E. No Solution

Lesson 12-20, All of Sections 6.7, 7.2, 7.3, and 7.4
For questions 7 and 8: An airplane, flying at a speed of 450 miles per hour, flies from a point A in the direction 150° for 2 hours, and then flies in the direction 60° for 3 hours.
7. How long will it take for the plane to get back to point A ?

Round to the nearest tenth of an hour.
A. 3.4 hrs .
B. 3.6 hrs .
C. 3.8 hrs .
D. 3.2 hrs .
E. None of the above
8. In what direction does the plane need to fly in order to get back to point A ? Round to the nearest degree.
A. 274°
B. 184°
C. 296°
D. 206°
E. None of the above

Lesson 12-20, All of Sections 6.7, 7.2, 7.3, and 7.4
9. Find all solutions of the equation using n as an arbitrary integer:

$$
3 \tan \left(2 x-\frac{\pi}{6}\right)=3 \sqrt{3}
$$

A. $x=\frac{\pi}{4}+\pi n$
B. $x=\frac{\pi}{6}+\frac{\pi}{2} n$
C. $x=\frac{\pi}{4}+\frac{\pi}{2} n$
D. $x=\frac{\pi}{6}+\pi n$
E. No Solution
10. Find the solutions of the equation that are in the interval $[0,2 \pi)$:

$$
\sin \left(2 x+\frac{\pi}{3}\right)=1
$$

A. $x=\frac{\pi}{12}, \frac{13 \pi}{12}$
B. $x=\frac{\pi}{6}, \frac{2 \pi}{3}, \frac{7 \pi}{6}, \frac{5 \pi}{3}$
C. $x=\frac{\pi}{6}, \frac{7 \pi}{6}$
D. $x=\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{13 \pi}{12}, \frac{19 \pi}{12}$
E. No Solution

Lesson 12-20, All of Sections 6.7, 7.2, 7.3, and 7.4
11. Find the solutions of the equation that are in the interval $[0,2 \pi)$:

$$
\sin ^{2} \theta+5 \sin \theta+6=0
$$

A. $\theta=3,2$
B. $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}$
C. $\theta=-3,-2$
D. $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
E. No Solution
12. Express as a trigonometric function of one angle:

$$
\cos 31^{\circ} \cos 20^{\circ}+\sin 31^{\circ} \sin 20^{\circ}
$$

A. $\sin \left(11^{\circ}\right)$
B. $\cos \left(51^{\circ}\right)$
C. $\sin \left(51^{\circ}\right)$
D. $\cos \left(11^{\circ}\right)$
E. None of the above
13. If $\sin \alpha=\frac{-3}{8}$ and $\tan \alpha>0$, find the exact value of $\sin \left(\alpha+\frac{\pi}{6}\right)$.
A. $\frac{-\sqrt{165}-3}{16}$
B. $\frac{-3 \sqrt{3}-\sqrt{55}}{16}$
C. $\frac{-\sqrt{165}+3}{16}$
D. $\frac{-3 \sqrt{3}+\sqrt{55}}{16}$
E. None of the above
14. If α and β are acute angles such that $\cos \alpha=\frac{3}{5}$ and $\tan \beta=\frac{8}{15}$, then find $\cos (\alpha+\beta)$.
A. $\frac{77}{85}$
B. $\frac{84}{85}$
C. $\frac{13}{85}$
D. $\frac{36}{85}$
E. None of the above
15. If $\tan \alpha=\frac{-24}{7}$ and $\csc \beta=\frac{-13}{12}$, for QII angle α and QIII angle β, then find $\sin (\alpha+\beta)$.
A. $\frac{253}{325}$
B. $\frac{-204}{325}$
C. $\frac{323}{325}$
D. $\frac{-36}{325}$
E. None of the above
16. Find the exact value of $\sin (2 \theta)$ for $\cos \theta=\frac{-6}{13} ; 180^{\circ}<\theta<270^{\circ}$.
A. $\frac{97}{169}$
B. $\frac{-12 \sqrt{133}}{169}$
C. $\frac{12 \sqrt{133}}{169}$
D. $\frac{-97}{169}$
E. None of the above

Lesson 12-20, All of Sections 6.7, 7.2, 7.3, and 7.4
17. Express as a cofunction of a complementary angle.

$$
\sin \left(52^{\circ} 42^{\prime}\right)
$$

A. $\cos \left(37^{\circ} 18^{\prime}\right)$
B. $\csc \left(37^{\circ} 58^{\prime}\right)$
C. $\cos \left(37^{\circ} 58^{\prime}\right)$
D. $\csc \left(37^{\circ} 18^{\prime}\right)$
E. None of the above
18. Find the solutions of the equation that are in the interval $[0,2 \pi)$.

$$
\sin t-\sin 2 t=0
$$

A. $t=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{3}, \frac{5 \pi}{3}$
B. $t=0, \pi, \frac{\pi}{3}, \frac{5 \pi}{3}$
C. $t=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
D. $t=0, \pi, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
E. None of the above

Lesson 12-20, All of Sections 6.7, 7.2, 7.3, and 7.4

Question	Answers	
1.	$7 \sqrt{3}$	A
2.	$69.8{ }^{\circ}$	D
3.	$c=b \csc \beta$	B
4.	13.2° None of the above	E
5.	1.6 feet	C
6.	$\theta=\frac{\pi}{4}+2 \pi n, \theta=\frac{7 \pi}{4}+2 \pi n$	D
7.	3.6 hrs.	B
8.	$274{ }^{\circ}$	A
9.	$x=\frac{\pi}{4}+\frac{\pi}{2} n$	C
10.	$x=\frac{\pi}{12}, \frac{13 \pi}{12}$	A
11.	No Solution	E
12.	$\cos \left(11^{\circ}\right)$	D
13.	$\frac{-3 \sqrt{3}-\sqrt{55}}{16}$	B
14.	$\frac{13}{85}$	C
15.	$\frac{-36}{325}$	D
16.	$\frac{12 \sqrt{133}}{169}$	C
17.	$\cos \left(37^{\circ} 18^{\prime}\right)$	A
18.	$t=0, \pi, \frac{\pi}{3}, \frac{5 \pi}{3}$	B

