MA 15400
 Spring 2013 Exam 3

Also three questions from Exam 2, Spring 2013

13. Find the exact value of the expression whenever it is defined.

$$
\cos \left(\sin ^{-1}\left(\frac{-1}{2}\right)\right)
$$

from Exam 2, Spring 2013
A. $\frac{-\sqrt{3}}{2}$
B. $\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{-1}{2}$
E. None of the above
14. Write the expression as an algebraic expression in x for $x>0$.

$$
\cos \left(\tan ^{-1} x\right) \quad \text { from Exam 2, Spring } 2013
$$

A. $\frac{x}{\sqrt{1+x^{2}}}$
B. $\frac{1}{1+x}$
C. $\frac{x}{1+x}$
D. $\frac{1}{\sqrt{1+x^{2}}}$
E. None of the above
15. Approximate the solutions of the equation, to two decimals, that are in the given interval.

$$
\sin ^{2} x-2 \sin x-2=0 ; \quad[0,2 \pi) \text { from Exam 2, Spring } 2013
$$

A. $3.96,5.46$
B. $2.36,3.18$
C. $2.73,3.87$
D. $3.57,5.14$
E. None of the above

Say out loud, "I am smart, I am good looking, and people love me!"

1. Find the perimeter of $\triangle A B C$, with $\alpha=31^{\circ}, a=290 \mathrm{~cm}$, and $c=200 \mathrm{~cm}$, to the nearest tenth.
A. 932.5 cm
B. 875.4 cm
C. 754.3 cm
D. 805.9 cm
E. None of the above
2. Given sides c and a, and angle γ of $\triangle A B C$, what angle or side would you find next, and what would you use to find it?
A. Angle β, Law of Sines
B. Side b, Law of Cosines
C. Angle α, Law of Sines
D. Side b, Law of Sines

E. Angle α, Law of Cosines
3. Given $\triangle A B C$, with $a=10, b=13$, and $c=15$, find angle γ to the nearest tenth of a degree.
A. $\gamma=99.7^{\circ}$
B. $\gamma=58.7^{\circ}$
C. $\gamma=121.3^{\circ}$
D. $\gamma=80.3^{\circ}$
E. None of the above.
4. To find the distance between two points A and B, that lie on opposite sides of a river, a surveyor picks a point C that is 290 yards from Point A , and on the same side of the river as Point A. The surveyor determines that the measures of $\angle B A C=60^{\circ}$ and $\angle A C B=54^{\circ}$. Approximate the distance between A and B. Round your answer to the nearest yard.
A. 264 yards
B. 271 yards
C. 260 yards
D. 274 yards
E. None of the above
5. The given information about $\triangle A B C, \gamma=34^{\circ}, c=20$ and $b=30$, creates different two triangles. To the nearest whole degree, find the smaller of the two values of angle α.
A. 61°
B. 23°
C. 57°
D. 19°
E. None of the above
6. An airplane is flying in the direction 130°, with airspeed of 400 miles per hour, and a 50 mile per hour wind is blowing in the direction 20°. Approximate the ground speed of the airplane to the nearest mile per hour.
A. 434 miles per hour
B. 353 miles per hour
C. 420 miles per hour
D. 386 miles per hour
E. None of the above.
7. Given vectors $a=\langle 3,-7\rangle$ and $b=\langle 8,5\rangle$, find $3 a-2 b$.
A. $\langle 25,-11\rangle$
B. $\langle 30,1\rangle$
C. $\langle-7,-31\rangle$
D. $\langle-18,29\rangle$
E. None of the above.
8. Given vector $a=-6 i-5 j$, find $\|a\|$, to the nearest tenth, and the smallest positive angle θ from the positive x-axis to vector a to the nearest 0.1°.
A. $\|a\|=7.8, \theta=219.8^{\circ}$
B. $\|a\|=4.6, \theta=230.2^{\circ}$
C. $\|a\|=7.8, \theta=230.2^{\circ}$
D. $\|a\|=4.6, \theta=219.8^{\circ}$
E. None of the above.
9. The vectors $\|a\|=7.8 \mathrm{lb}$ and $\|b\|=4.3 \mathrm{lb}$ represent two forces acting at the same point, and $\theta=78^{\circ}$ is the smallest positive angle between a and b. Approximate the magnitude of the resultant force to the nearest tenth.
A. $\|r\|=8.1 \mathrm{lb}$
B. $\|r\|=9.7 \mathrm{lb}$
C. $\|r\|=8.5 \mathrm{lb}$
D. $\|r\|=9.3 \mathrm{lb}$
E. None of the above.

Lessons 24-33, All of Sections 8.1, 8.2, 8.3 and 8.4
10. Approximate, to the nearest tenth, the horizontal and vertical components of the vectors that is described.

A quarterback releases a football with a speed of $41 \mathrm{ft} / \mathrm{sec}$ at an angle of 56° to the horizontal.

Horizontal Component: $21.7 \mathrm{ft} / \mathrm{sec}$
A. Vertical Component: $35.2 \mathrm{ft} / \mathrm{sec}$
B. Horizontal Component: $34.0 \mathrm{ft} / \mathrm{sec}$

Vertical Component: $22.9 \mathrm{ft} / \mathrm{sec}$
Horizontal Component: $35.2 \mathrm{ft} / \mathrm{sec}$
C. Vertical Component: $21.7 \mathrm{ft} / \mathrm{sec}$
D. Horizontal Component: $22.9 \mathrm{ft} / \mathrm{sec}$
E. None of the above.
11. Find the vector that has three times the magnitude and is in the same direction as the given vector.

$$
a=3 i-7 j
$$

A. $9 i-21 j$
B. $\frac{-9}{\sqrt{52}} i+\frac{21}{\sqrt{52}} j$
C. $-9 i+21 j$
D. $\frac{9}{\sqrt{52}} i-\frac{21}{\sqrt{52}} j$
E. None of the above.
12. $F_{1}\langle 4,-5\rangle, F_{2}\langle-3,-8\rangle$, and $F_{3}\langle-7,20\rangle$ are three forces acting at the same point, find the additional force \mathbf{G} that needs to be added in order for there to be equilibrium.
A. $G=\langle-6,7\rangle$
B. $G=\langle-8,12\rangle$
C. $G=\langle 6,-7\rangle$
D. $G=\langle 8,-12\rangle$
E. None of the above.
13. Find the angle, to the nearest 0.1°, between the vectors, $a=\langle 9,7\rangle$ and $b=\langle 4,-12\rangle$
A. 56.3°
B. 109.4°
C. 70.6°
D. 123.6°
E. None of the above.

Lessons 24-33, All of Sections 8.1, 8.2, 8.3 and 8.4
14. Determine m such that the two vectors $a=-4 i+7 j$ and $b=7 i+2 m j$ are orthogonal.
A. $m=2$
B. $m=\frac{1}{2}$
C. $m=-2$
D. $m=\frac{-1}{2}$
E. None of the above.
15. The magnitude and direction of the two forces acting at a point P are:

$$
a=8.4 \mathrm{lb} @ 100^{\circ} \text { and } b=4.2 \mathrm{lb} @ 225^{\circ}
$$

Approximate, to the nearest 0.1°, the direction of the resultant vector.
A. $\theta=135.1^{\circ}$
B. $\theta=115.4^{\circ}$
C. $\theta=119.5^{\circ}$
D. $\theta=129.9^{\circ}$
E. None of the above.

Lessons 24-33, All of Sections 8.1, 8.2, 8.3 and 8.4

Question	Exam 3 Answers		from Exam 2, Spring 2013		
13.	$\frac{\sqrt{3}}{2}$	C			
14.	$\frac{1}{\sqrt{1+x^{2}}}$	D	from Exam 2, Spring 2013		
15.	3.96, 5.46	A	from Exam 2, Spring 2013		
1.	932.5 cm	A			
2.	Angle α, Law of Sines	C			
3.	$\gamma=80.3^{\circ}$	D			
4.	257 yards	E			
5.	23°	B			
6.	386 miles per hour	D			
7.	$\langle-7,-31\rangle$	C			
8.	$\\|a\\|=7.8, \theta=219.8^{\circ}$	A			
9.	$\\|r\\|=9.7 \mathrm{lb}$	B			
10.	Horizontal Component: $22.9 \mathrm{ft} / \mathrm{sec}$ Vertical Component: $34.0 \mathrm{ft} / \mathrm{sec}$	D			
11.	$9 i-21 j$	A			
12.	$G=\langle 6,-7\rangle$	C			
13.	$109.4{ }^{\circ}$	B			
14.	$m=2$	A			
15.	$\theta=129.9^{\circ}$	D			

