Exam 2 Test Number 01 (green)

- 1) A business has determined that the total profit in hundreds of dollars from selling x items is given by the profit function, $P(x) = 4x^2 6x + 2$. Find the average rate of change of profit as x changes from 3 to 5. Which statement describes the interpretation of this result?
 - A. As 3 to 5 items are sold, the average profit is increasing by about \$2600 per item.
 - B. As 3 to 5 items are sold, the average profit is increasing by about \$1800 per item.
 - C. As 3 to 5 items are sold, the average profit is increasing by about \$3400 per item.
 - D. As 3 to 5 items are sold, the average profit is increasing by about \$3000 per item.
 - *E.* As 3 to 5 items are sold, the average profit is increasing by about \$2500 per item.

2) For a function *f*, the definition of the derivative is $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$. Given the function $f(x) = -x^2 + 2x - 7$, use the limit definition of the derivative to find the derivative. Which **choice is one** of the intermediate <u>or</u> final steps in this process?

A.
$$f'(x) = -2x - 7$$

B. $f'(x) = \lim_{h \to 0} \left(\frac{-x^2 - 2xh - h^2 + 2x + 2h - 7 - (-x^2 + 2x - 7)}{h} \right)$
C. $f'(x) = \lim_{h \to 0} \left(\frac{-x^2 - h^2 + 2x + 2h - 7 + x^2 - 2x + 7}{h} \right)$
D. $f'(x) = \lim_{h \to 0} \left(\frac{-2x - h + 2}{h} \right)$
E. $f'(x) = \lim_{h \to 0} (-2x - 2h + 2)$

Exam 2 Test Number 01 (green)

- 3) Find the equation of the tangent line to the curve of $f(x) = \frac{1}{2x} + 2\sqrt{x}$ at the point $\left(1, \frac{5}{2}\right)$. Write your equation in slope-intercept form.
 - A. $y = -4x \frac{3}{2}$ B. $y = \frac{1}{2}x - \frac{5}{2}$ C. $y = \frac{3}{2}x - 4$ D. $y = \frac{1}{2}x + \frac{3}{2}$
 - *E.* None of the above.

4) The demand function (price function) for the production of x hamburgers is $p = \frac{60,000 - x}{20,000}$. The cost function (in dollars) of producing x hamburgers is given by C(x) = 5000 + 0.56xwhere $0 \le x \le 50000$. Find the <u>marginal **profit** (or loss)</u> when 20,000 hamburgers are produced. Hint: You will need to write a revenue function first.

- *A.* \$0.44 per hamburger
- *B.* \$0.44 per hamburger
- C. -\$1.44 per hamburger
- D. \$0.56 per hamburger
- *E.* \$0.56 per hamburger

5) Find all point(s) where the tangent line to the graph of $y = (2x-1)(x^2+2x+1)$ is horizontal. Hint: Think about the slope of a horizontal line.

A.
$$\left(\frac{1}{2}, 0\right)$$
, (-1,0)
B. (0,-1), (-1,0)
C. $\left(\frac{1}{2}, 0\right)$
D. (-1,0)
E. (0,-1)

- 6) Find the slope of the tangent line to the graph of $f(x) = x^3 + 9x^2 + 19x 10$ when x = -4. Which statement describes this slope?
 - A. The slope is less than -10.
 - B. The slope is between -10 and -6.
 - C. The slope is between -6 and -2.
 - D. The slope is between -2 and 2.
 - *E.* The slope is greater than 2.

7) If
$$g(x) = \frac{x^3 - 5x^2 - 7x + 3}{2\sqrt{x}}$$
, find $g'(x)$.

- A. $g'(x) = 3x^{5/2} 10x^{3/2} 7x^{1/2}$ B. $g'(x) = \frac{5}{4}x^{3/2} - \frac{15}{4}x^{1/2} - \frac{7}{4}x^{-1/2} - \frac{3}{4}x^{-3/2}$ C. $g'(x) = \frac{7}{4}x^{5/2} - \frac{25}{4}x^{3/2} - \frac{21}{4}x^{1/2} + \frac{3}{4}x^{-1/2}$ D. $g'(x) = -\frac{1}{2}x^{5/2} + 4x^{3/2} - \frac{3}{2}x^{1/2} - 2x^{-1/2}$
- *E.* None of the above.
- 8) Given the following information about some values of two functions f and g: g(3) = 4, g'(3) = 5, f(3) = 9, f'(3) = 8

If
$$h(x) = \frac{f(x)}{g(x)}$$
, find $h'(3)$.

 $A. \quad \frac{13}{16} \\ B. \quad \frac{77}{16} \\ C. \quad \frac{8}{5} \\ D. \quad -\frac{13}{16} \\ E. \quad -\frac{13}{4} \\ ext{A}$

9) Solve the equation f'(x) = 0, where $f(x) = (x^2 - 2)(x^2 - 1)$.

A.
$$x = -\sqrt{\frac{2}{3}}, 0, \sqrt{\frac{2}{3}}$$

B. $x = -\sqrt{2}, -1, 2, \sqrt{2}$
C. $x = -\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}$
D. $x = -\sqrt{\frac{3}{2}}, 0, \sqrt{\frac{3}{2}}$
E. $x = 1, \sqrt{2}$

10) Find
$$\frac{dy}{dx}$$
 if $y = (2x^2 - 5x + 1)^3$.

A.
$$\frac{dy}{dx} = (12x-5)(2x^2-5x+1)^2$$

B. $\frac{dy}{dx} = 3(4x-5)(2x^2-5x+1)^2$
C. $\frac{dy}{dx} = 3(4x-5)^2$
D. $\frac{dy}{dx} = 12x(2x^2-5x+1)^2$
E. $\frac{dy}{dx} = 12(4x-5)^2$

11) Find the slope of the tangent line to $f(x) = \frac{\frac{1}{2}x+1}{2x-3}$ at the point $\left(4, \frac{3}{5}\right)$.

A.
$$m = \frac{17}{50}$$

B. $m = \frac{1}{25}$
C. $m = \frac{-7}{25}$
D. $m = \frac{1}{50}$
E. $m = \frac{-7}{50}$

- 12) Experiments show that when a flea jumps, its height (in meters) after *t* seconds is given by $H(t) = \frac{1}{10}(44t - 49t^2)$. Find the instantaneous **velocity** of the flea after 0.2 seconds. Remember: Velocity is instantaneous rate of change in height distance with respect to time.
 - *A.* 4.88 m/sec
 - *B*. 1.22 m/sec
 - *C*. 2.44 m/sec
 - D. 12.2 m/sec
 - *E.* 24.4 m/sec
- 13) Solve the equation below and select the correct description of the solution.

$$16^{x+3} = 64^{2x-1}$$

- A. The solution is less than -1.
- B. The solution is between -1 and 0.
- *C.* The soltuion is between 0 and 1.
- *D*. The solution is between 1 and 2.
- *E.* The solution is greater than 2.
- 14) Julie invested \$28,000 she won in a lottery. She was able to get a 4% annual interest rate compounded <u>semiannually</u>. How much <u>interest</u> has Julie earned in the account in 4 years? Round your interest amount to the nearest dollar. See formulas on the cover sheet.
 - *A*. \$4806
 - *B*. \$4850
 - *C*. \$4756
 - D. \$4858
 - *E*. \$4832

15) Find the derivative of function *h*. Write answer in factored form.

 $h(x) = 4x(6x^5+5)^3$

- A. $4(6x^5+5)^2(6x^5+3x+5)$
- *B.* $360x^4(6x^5+5)^2$
- C. $4(6x^5+5)^2(90x^5+11)$
- $D. \quad 4(6x^5+5)^2(6x^5+90x^2+5)$
- *E*. $4(6x^5+5)^2(96x^5+5)$