1) A business has determined that the total profit in hundreds of dollars from selling x items is given by the profit function, $P(x)=4 x^{2}-6 x+2$. Find the average rate of change of profit as x changes from 3 to 5. Which statement describes the interpretation of this result?
A. As 3 to 5 items are sold, the average profit is increasing by about $\$ 2600$ per item.
B. As 3 to 5 items are sold, the average profit is increasing by about $\$ 1800$ per item.
C. As 3 to 5 items are sold, the average profit is increasing by about $\$ 3400$ per item.
D. As 3 to 5 items are sold, the average profit is increasing by about $\$ 3000$ per item.
E. As 3 to 5 items are sold, the average profit is increasing by about $\$ 2500$ per item.
2) For a function f, the definition of the derivative is $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. Given the function $f(x)=-x^{2}+2 x-7$, use the limit definition of the derivative to find the derivative. Which choice is one of the intermediate or final steps in this process?
A. $f^{\prime}(x)=-2 x-7$
B. $f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{-x^{2}-2 x h-h^{2}+2 x+2 h-7-\left(-x^{2}+2 x-7\right)}{h}\right)$
C. $f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{-x^{2}-h^{2}+2 x+2 h-7+x^{2}-2 x+7}{h}\right)$
D. $f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{-2 x-h+2}{h}\right)$
E. $f^{\prime}(x)=\lim _{h \rightarrow 0}(-2 x-2 h+2)$
3) Find the equation of the tangent line to the curve of $f(x)=\frac{1}{2 x}+2 \sqrt{x}$ at the point $\left(1, \frac{5}{2}\right)$. Write your equation in slope-intercept form.
A. $y=-4 x-\frac{3}{2}$
B. $y=\frac{1}{2} x-\frac{5}{2}$
C. $y=\frac{3}{2} x-4$
D. $y=\frac{1}{2} x+\frac{3}{2}$
E. None of the above.
4) The demand function (price function) for the production of x hamburgers is $p=\frac{60,000-x}{20,000}$.

The cost function (in dollars) of producing x hamburgers is given by $C(x)=5000+0.56 x$ where $0 \leq x \leq 50000$. Find the marginal profit (or loss) when 20,000 hamburgers are produced. Hint: You will need to write a revenue function first.
A. $\$ 0.44$ per hamburger
B. $-\$ 0.44$ per hamburger
C. $-\$ 1.44$ per hamburger
D. $\$ 0.56$ per hamburger
E. $-\$ 0.56$ per hamburger
5) Find all point(s) where the tangent line to the graph of $y=(2 x-1)\left(x^{2}+2 x+1\right)$ is horizontal. Hint: Think about the slope of a horizontal line.
A. $\left.\left(\frac{1}{2}, 0\right)\right),(-1,0)$
B. $(0,-1),(-1,0)$
C. $\left.\left(\frac{1}{2}, 0\right)\right)$
D. $(-1,0)$
E. $(0,-1)$
6) Find the slope of the tangent line to the graph of $f(x)=x^{3}+9 x^{2}+19 x-10$ when $x=-4$. Which statement describes this slope?
A. The slope is less than -10 .
B. The slope is between -10 and -6 .
C. The slope is between -6 and -2 .
D. The slope is between -2 and 2 .
E. The slope is greater than 2.
7) If $g(x)=\frac{x^{3}-5 x^{2}-7 x+3}{2 \sqrt{x}}$, find $g^{\prime}(x)$.
A. $g^{\prime}(x)=3 x^{5 / 2}-10 x^{3 / 2}-7 x^{1 / 2}$
B. $g^{\prime}(x)=\frac{5}{4} x^{3 / 2}-\frac{15}{4} x^{1 / 2}-\frac{7}{4} x^{-1 / 2}-\frac{3}{4} x^{-3 / 2}$
C. $g^{\prime}(x)=\frac{7}{4} x^{5 / 2}-\frac{25}{4} x^{3 / 2}-\frac{21}{4} x^{1 / 2}+\frac{3}{4} x^{-1 / 2}$
D. $g^{\prime}(x)=-\frac{1}{2} x^{5 / 2}+4 x^{3 / 2}-\frac{3}{2} x^{1 / 2}-2 x^{-1 / 2}$
E. None of the above.
8) Given the following information about some values of two functions f and g :

$$
g(3)=4, g^{\prime}(3)=5, f(3)=9, f^{\prime}(3)=8
$$

$$
\text { If } h(x)=\frac{f(x)}{g(x)}, \text { find } h^{\prime}(3)
$$

A. $\frac{13}{16}$
B. $\frac{77}{16}$
C. $\frac{8}{5}$
D. $-\frac{13}{16}$
E. $-\frac{13}{4}$
9) Solve the equation $f^{\prime}(x)=0$, where $f(x)=\left(x^{2}-2\right)\left(x^{2}-1\right)$.
A. $x=-\sqrt{\frac{2}{3}}, 0, \sqrt{\frac{2}{3}}$
B. $x=-\sqrt{2},-1,2, \sqrt{2}$
C. $x=-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}$
D. $x=-\sqrt{\frac{3}{2}}, 0, \sqrt{\frac{3}{2}}$
E. $\quad x=1, \sqrt{2}$
10) Find $\frac{d y}{d x}$ if $y=\left(2 x^{2}-5 x+1\right)^{3}$.
A. $\frac{d y}{d x}=(12 x-5)\left(2 x^{2}-5 x+1\right)^{2}$
B. $\frac{d y}{d x}=3(4 x-5)\left(2 x^{2}-5 x+1\right)^{2}$
C. $\frac{d y}{d x}=3(4 x-5)^{2}$
D. $\frac{d y}{d x}=12 x\left(2 x^{2}-5 x+1\right)^{2}$
E. $\frac{d y}{d x}=12(4 x-5)^{2}$
11) Find the slope of the tangent line to $f(x)=\frac{\frac{1}{2} x+1}{2 x-3}$ at the point $\left(4, \frac{3}{5}\right)$.
A. $m=\frac{17}{50}$
B. $m=\frac{1}{25}$
C. $m=\frac{-7}{25}$
D. $m=\frac{1}{50}$
E. $\quad m=\frac{-7}{50}$
12) Experiments show that when a flea jumps, its height (in meters) after t seconds is given by $H(t)=\frac{1}{10}\left(44 t-49 t^{2}\right)$. Find the instantaneous velocity of the flea after 0.2 seconds. Remember: Velocity is instantaneous rate of change in height distance with respect to time.
A. $4.88 \mathrm{~m} / \mathrm{sec}$
B. $\quad 1.22 \mathrm{~m} / \mathrm{sec}$
C. $2.44 \mathrm{~m} / \mathrm{sec}$
D. $12.2 \mathrm{~m} / \mathrm{sec}$
E. $24.4 \mathrm{~m} / \mathrm{sec}$
13) Solve the equation below and select the correct description of the solution.

$$
16^{x+3}=64^{2 x-1}
$$

A. The solution is less than -1 .
B. The solution is between -1 and 0 .
C. The soltuion is between 0 and 1 .
D. The solution is between 1 and 2 .
E. The solution is greater than 2 .
14) Julie invested $\$ 28,000$ she won in a lottery. She was able to get a 4% annual interest rate compounded semiannually. How much interest has Julie earned in the account in 4 years? Round your interest amount to the nearest dollar. See formulas on the cover sheet.
A. $\$ 4806$
B. $\$ 4850$
C. $\$ 4756$
D. $\$ 4858$
E. $\$ 4832$
15) Find the derivative of function h. Write answer in factored form.

$$
h(x)=4 x\left(6 x^{5}+5\right)^{3}
$$

A. $4\left(6 x^{5}+5\right)^{2}\left(6 x^{5}+3 x+5\right)$
B. $360 x^{4}\left(6 x^{5}+5\right)^{2}$
C. $4\left(6 x^{5}+5\right)^{2}\left(90 x^{5}+11\right)$
D. $4\left(6 x^{5}+5\right)^{2}\left(6 x^{5}+90 x^{2}+5\right)$
E. $4\left(6 x^{5}+5\right)^{2}\left(96 x^{5}+5\right)$

