1) If \(f(x) = 5x^2 - 3 \) and \(g(x) = 2x + 3 \), find \(g[f(x)] \).

A. \(10x^2 \)
B. \(20x^2 + 60x + 42 \)
C. \(10x^2 - 3 \)
D. \(20x^2 + 42 \)
E. \(10x^2 + 30x + 21 \)

2) Find \(f'(x) \) or the derivative of \(f \), if \(f(x) = (4x^4 - 7x^2 + 2)^3 \). (Write answer completely factored.)

A. \(f'(x) = 6x(8x^2 - 7)(4x^4 - 7x^2 + 2)^2 \)
B. \(f'(x) = 3(16x^3 - 14x)^2 \)
C. \(f'(x) = 3x(8x^2 - 7)(4x^4 - 7x^2 + 2)^2 \)
D. \(f'(x) = 3(4x^4 - 7x^2 + 2)^2 \)
E. \(f'(x) = 6x(8x^2 - 7)(4x^4 - 7x^2 + 2) \)

3) Find the derivative of the function below. (Completely factor the derivative.)

\[y = -4x(2x^2 - 3)^5 \]

A. \(-4(2x^2 - 3)^4(20x^2 + 2x - 3) \)
B. \((2x^2 - 3)^4(1 - 80x^2) \)
C. \(-4(2x^2 - 3)(22x^2 - 3) \)
D. \(-4(2x^2 - 3)^4(22x^2 - 3) \)
E. \(15360x^2(2x^2 + 3)^4 \)
4) If \(f(x) = e^{-x}(\ln x) \), find \(f'(x) \) when \(x = 1 \).

\[
\begin{align*}
A. & \quad 0 \\
B. & \quad f'(1) \text{ does not exist.} \\
C. & \quad \frac{2}{e} \\
D. & \quad e \\
E. & \quad \frac{1}{e}
\end{align*}
\]

5) Solve the equation below. Then, select the correct choice that describes the solution.

\[
32^{2x-3} = 16^{x+1}
\]

\[
\begin{align*}
A. & \quad \text{The solution is greater than 3.} \\
B. & \quad \text{The solution is less than 0.} \\
C. & \quad \text{The solution is greater than 0, but less than 1.} \\
D. & \quad \text{The solution is greater than 1, but less than 2.} \\
E. & \quad \text{The solution is greater than 2, but less than 3.}
\end{align*}
\]

6) Which statement(s) in the box below is(are) true?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(\log_b 9 = 2) is equivalent to (3^2 = 9).</td>
</tr>
<tr>
<td>II</td>
<td>(\ln 21) is approximately 1.322.</td>
</tr>
<tr>
<td>III</td>
<td>(\log_b 50 = \log_b 5 + \log_b 10).</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
A. & \quad \text{I and III only.} \\
B. & \quad \text{III only.} \\
C. & \quad \text{II and III only.} \\
D. & \quad \text{I and II only.} \\
E. & \quad \text{None are true.}
\end{align*}
\]
7) Julie deposits $1500 in an account that earns a 3% interest rate compounded quarterly. If she leaves the money to grow, how much interest has the account earned in 8 years? Round to the nearest dollar. (See the formulas on the cover sheet.)

A. $92
B. $405
C. $46
D. $140
E. None of the above.

8) If \(\log_2 32 = a \), \(\log_2 3 = b \), and \(\log_2 7 = c \), find an expression to represent \(\log_2 \left(\frac{21}{32} \right) \).

A. \(bc - a \)
B. \(a - b - c \)
C. \(\frac{bc}{a} \)
D. \(b + c - a \)
E. \(-abc \)

9) Approximate the solution of this equation (rounded to 3 decimal places).

\[2^x = 11 \]

A. 0.289
B. 3.317
C. 3.091
D. 1.662
E. 3.459
10) Find the derivative of the function below. Factor your answer.

\[y = \ln(x^2 + 24x) \]

A. \[y' = \frac{x + 12}{x(x + 24)} \]
B. \[y' = \frac{2(x + 12)}{x(x + 24)} \]
C. \[y' = \frac{x + 12}{x + 24} \]
D. \[y' = \frac{1}{x^2} + \frac{1}{24x} \]
E. \[y' = \frac{1}{x(x + 24)} \]

11) Find the derivative of function \(f \) given below.

\[f(x) = \frac{e^x}{3\ln x} \]

A. \[f'(x) = \frac{e^x \left(\ln x^3 - \frac{1}{x^3} \right)}{9(\ln x)^2} \]
B. \[f'(x) = \frac{e^x \left(\frac{1}{x} - 1 \right)}{3(\ln x)^2} \]
C. \[f'(x) = \frac{e^x (\ln x - 1)}{3(\ln x)^2} \]
D. \[f'(x) = \frac{xe^x}{3} \]
E. \[f'(x) = \frac{e^x \left(\ln x - \frac{1}{x} \right)}{3(\ln x)^2} \]
12) Find the value of x where the tangent to the graph of $y = xe^{-x}$ is horizontal.

A. 0
B. $\frac{1}{e}$
C. $-\frac{1}{e}$
D. 1
E. -1

13) Given: function $y = xe^x$, with first derivative $\frac{dy}{dx} = xe^x + e^x$ and second derivative $\frac{d^2y}{dx^2} = xe^x + 2e^x$.

Which of the following statements is(are) true?

<table>
<thead>
<tr>
<th>I</th>
<th>The function is increasing on the interval $(-1, \infty)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>The function is concave upward on the interval $(-2, \infty)$.</td>
</tr>
<tr>
<td>III</td>
<td>The function is decreasing on the interval $(-\infty, 2)$.</td>
</tr>
<tr>
<td>IV</td>
<td>There is no interval where the function is concave downward.</td>
</tr>
</tbody>
</table>

A. II and III only
B. I and II only
C. I only
D. I, III, and IV only
E. I and IV only
14) Which statement below is true about the graph of the function \(f(x) = \frac{x^2 + 4}{2 + 7x - 4x^2} \)?

A. The line \(x = 1 \) is a vertical asymptote.
B. The line \(y = \frac{1}{4} \) is a horizontal asymptote.
C. The line \(x = -\frac{1}{4} \) is a vertical asymptote.
D. The graph has no vertical or horizontal asymptotes.
E. The line \(y = 2 \) is a horizontal asymptote.

15) Find the second derivative of \(y = e^x(x-1)^2 \).

A. \(e^x(x-1)^2 \)
B. \(e^x(x^2 + 2x - 1) \)
C. \(e^x(x^2 - 2x - 1) \)
D. \(2e^x(x-1) \)
E. \(2e^x \)