MA 16200
EXAM 1 INSTRUCTIONS
VERSION 01
September 13, 2018

Your name ____________________________ Your TA’s name ____________________________
Student ID # __________________________ Section # and recitation time _____________

1. You must use a \#2 pencil on the scantron sheet (answer sheet).

2. Check that the cover of your question booklet is GREEN and that it has VERSION 01 on the top. Write 01 in the TEST/QUIZ NUMBER boxes and blacken in the appropriate spaces below.

3. On the scantron sheet, fill in your TA’s name (NOT the lecturer’s name) and the course number.

4. Fill in your NAME and PURDUE ID NUMBER, and blacken in the appropriate spaces.

5. Fill in the four-digit SECTION NUMBER.

6. Sign the scantron sheet.

7. Blacken your choice of the correct answer in the spaces provided for each of the questions 1–12. Do all your work on the question sheets. Show your work on the question sheets. Although no partial credit will be given, any disputes about grades or grading will be settled by examining your written work on the question sheets.

8. There are 12 questions, each worth 8 points. The maximum possible score is \(8 \times 12 + 4 \) (for taking the exam) = 100 points.

9. NO calculators, electronic device, books, or papers are allowed. Use the back of the test pages for scrap paper.

10. After you finish the exam, turn in BOTH the scantron sheets and the exam booklets.

11. If you finish the exam before 8:55, you may leave the room after turning in the scantron sheets and the exam booklets. If you don’t finish before 8:55, you should REMAIN SEATED until your TA comes and collects your scantron sheets and exam booklets.
Exam Policies

1. Students must take pre-assigned seats and/or follow TAs’ seating instructions.
2. Students may not open the exam until instructed to do so.
3. No student may leave in the first 20 min or in the last 5 min of the exam.
4. Students late for more than 20 min will not be allowed to take the exam; they will have to contact their lecturer within one day for permission to take a make-up exam.
5. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs will collect the scantrons and the exams.
6. Any violation of the above rules may result in score of zero.

Rules Regarding Academic Dishonesty

1. You are not allowed to seek or obtain any kind of help from anyone to answer questions on the exam. If you have questions, consult only your instructor.
2. You are not allowed to look at the exam of another student. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.
3. You may not consult notes, books, calculators. You may not handle cell phones or cameras, or any electronic devices until after you have finished your exam, handed it in to your instructor and left the room.
4. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty can be very severe and may include an F in the course. All cases of academic dishonesty will be reported immediately to the Office of the Dean of Students.

I have read and understand the exam policies and the rules regarding the academic dishonesty stated above:

STUDENT NAME:

STUDENT SIGNATURE:
Questions

1. The area of a triangle with vertices (1, 1, 1), (2, 2, 3) and (1, 2, 2) is

 A. $\sqrt{3}$
 B. $\sqrt{3}/2$
 C. $1/2$
 D. 1
 E. 2
2. Given $|\vec{u}| = 3$, $|\vec{v}| = 4$ and the angle between \vec{u} and \vec{v} is $2\pi/3$, find $|\vec{u} + \vec{v}|$.

Hint: $|\vec{u} + \vec{v}|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$.

A. 1
B. 3
C. $\sqrt{13}$
D. $\sqrt{29}$
E. $\sqrt{37}$
3. Given $|\vec{u}| = 1$, $|\vec{v}| = 5$ and the angle between \vec{u} and \vec{v} is $\pi/6$, find $|\vec{u} \times \vec{v}|$.

A. $1/2$
B. 1
C. $3/2$
D. 2
E. $5/2$
4. If $\vec{a} = (1, 1, 1)$ then the vector projection of $\langle 1, 0, 1 \rangle$ onto \vec{a} is

A. $\langle 1/3, 1/3, 1/3 \rangle$
B. $\langle 2/3, 2/3, 2/3 \rangle$
C. $\langle 1/\sqrt{2}, 1/\sqrt{2}, 1/\sqrt{2} \rangle$
D. $\langle 2/\sqrt{3}, 2/\sqrt{3}, 2/\sqrt{3} \rangle$
E. $\langle 2/\sqrt{6}, 2/\sqrt{6}, 2/\sqrt{6} \rangle$
5. The angle between $\vec{a} = \langle 2, -1, 2 \rangle$ and $\vec{b} = \langle 1, -1, 0 \rangle$ is

A. $\pi/4$
B. $\pi/6$
C. $\pi/3$
D. $2\pi/3$
E. $3\pi/4$
6. Find the volume of the parallelepiped with adjacent edges \(PQ, PR \) and \(PS \) where \(P(-2,1,0), Q(2,3,2), R(1,4,-1) \) and \(S(3,6,1) \) are points in \(\mathbb{R}^3 \).

A. 2
B. 4
C. 8
D. 16
E. 32
7. The area of the region between the curves $y = x^3$ and $y = 4x$ is:

A. 8
B. 4
C. 6
D. 2
E. 0
8. Find the volume of the region bounded by the curves $y = -x$ and $y = -x^2$ rotated about the x-axis.

A. $-\pi/8$
B. $\pi/8$
C. $2\pi/15$
D. $5\pi/3$
E. $2\pi/5$
9. Using the method of cylindrical shells, find the volume of the solid obtained by rotating
the region bounded by \(y = x^2 \) and \(y = x \) about \(x = 1 \).

A. \(2\pi \int_0^1 (x - x^2)^2 \, dx \)
B. \(2\pi \int_0^1 x(x + 1)^2 \, dx \)
C. \(2\pi \int_0^1 x(x^2 - 4x + 2) \, dx \)
D. \(2\pi \int_0^1 x(x - x^2) \, dx \)
E. \(2\pi \int_0^1 x(x - 1)^2 \, dx \)
10. The base of a solid in the xy-place is bounded by $y = 4 - x^2$ and $y = 0$. Its cross sections perpendicular to the y-axis are squares. Find the volume of the solid:

A. $\int_{-2}^{2} (4 - x^2)^2 \, dx$
B. $\int_{0}^{2} (4 - x^2)^2 \, dx$
C. $\int_{0}^{4} 4(4 - y) \, dy$
D. $\int_{0}^{2} 4(4 - y) \, dy$
E. $\int_{0}^{4} 4(4 + y) \, dy$
11. A force of 4 pounds stretches a spring with natural length of 12 inches to 18 inches. Find the total work by stretching the spring from a length of 18 inches to 24 inches. Note: 1 ft = 12 in.

A. 5 ft-lb
B. 3 ft-lb
C. 8 ft-lb
D. 6 ft-lb
E. 3/2 ft-lb
12. Evaluate the integral

\[\int_{1}^{2} x^2 \ln x \, dx \]

A. 8 ln 2 \(-\frac{7}{3}\)
B. \(\frac{8}{3} \ln 2 - \frac{7}{9}\)
C. 24 ln 2 \(-7\)
D. 4 ln 2
E. \(\frac{8}{3} \ln 2\)