MA162 — EXAM III — FALL 2016 — NOVEMBER 10, 2016 TEST NUMBER 01

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. MARK YOUR TEST NUMBER ON YOUR SCANTRON
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 7 different test pages (including this cover page).
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. Each problem is worth 8 points. Everyone gets 4 points. The maximum possible score is 100 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 50 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have questions, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. **Do not handle** phones or cameras, calculators or any electronic device until after you have finished your exam, handed it in to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT NAME:
STUDENT SIGNATURE:
STUDENT ID NUMBER:
SECTION NUMBER AND RECITATION INSTRUCTOR:

- 1. Find all values of p such that the series $\sum_{k=1}^{\infty} \sqrt{\frac{k^3 + 3k}{k^p + 2}}$ converges.
 - A. p > 1
 - B. p > 4
 - C. p > 5
 - D. p > 2
 - E. p > 7

- 2. Which of the statements below is true for the series $\sum_{m=1}^{\infty} \frac{3^{-m}}{\sin(m) + 2}$?
 - A. It diverges by comparison with $\sum_{m=1}^{\infty} \frac{1}{\sin(m) + 2}.$
 - B. It diverges by comparison with $\sum_{m=1}^{\infty} 3^{-m}$.
 - C. It converges by comparison test $\sum_{m=1}^{\infty} \frac{1}{\sin(m) + 2}.$
 - D. The comparison test is not applicable.
 - E. It converges by comparison with $\sum_{m=1}^{\infty} 3^{-m}$.

3. Which of the following series converge?

I.
$$\sum_{k=1}^{\infty} \frac{1}{2k+1}$$
; II. $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{\sqrt{k}+1}$; III. $\sum_{k=1}^{\infty} \frac{1}{k^2+1}$

- A. All three
- B. Only I and II
- C. Only III
- D. None
- E. Only II and III

- 4. Consider $S = \sum_{m=1}^{\infty} (-1)^{m-1} \frac{1}{m^4}$ and its partial sum $S_n = \sum_{m=1}^{n} (-1)^{m-1} \frac{1}{m^4}$. According to the alternating series estimation theorem, what is the smallest n such that $|S S_n| \le 16 \times 10^{-8}$?
 - A. n = 101
 - B. n = 99
 - C. n = 51
 - D. n = 49
 - E. n = 499

5. Which of the statements is true about the following series?

$$I. \sum_{n=1}^{\infty} (-1)^{n-1} \cos(n); \quad II. \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)}; \quad III. \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n+1}}{n}.$$

- A. All three are convergent
- B. Only II is convergent
- C. Only II and III are convergent
- D. Only III is convergent
- E. Only I and II are convergent

- **6.** Which of the following statements is false?
 - A. $\sum_{n=1}^{\infty} \frac{1}{n^p + n}$ is convergent for all p > 1.
 - B. $\sum_{n=1}^{\infty} r^n$ diverges for all r such that $|r| \ge 1$.
 - C. If $0 \le a_n \le b_n$ and $\sum_{n=1}^{\infty} a_n$ is convergent, then $\sum_{n=1}^{\infty} b_n$ is also convergent.
 - D. If $0 \le a_n \le b_n$ and $\sum_{n=1}^{\infty} a_n$ is divergent, then $\sum_{n=1}^{\infty} b_n$ is also divergent.
 - E. $\sum_{n=1}^{\infty} \frac{n^2}{r^n}$ converges for all r such that |r| > 1.

7. Which of the following series converge?

$$S_1 = \sum_{n=1}^{\infty} \frac{3^n}{4^n + 5^n}, \quad S_2 = \sum_{n=1}^{\infty} \frac{n^2}{n^3 + 5n}, \quad S_3 = \sum_{n=2}^{\infty} \frac{\ln n}{n},$$

- A. S_1 , S_2 and S_3
- B. Only S_1 and S_2
- C. Only S_2 and S_3
- D. Only S_1 and S_3
- E. Only S_1

8. Which of the following series converge?

$$S_1 = \sum_{n=1}^{\infty} \frac{n!}{10^n}, \quad S_2 = \sum_{n=1}^{\infty} \frac{10^n}{(n+1)^n}, \quad S_3 = \sum_{n=2}^{\infty} n^8 \ 2^{-n},$$

- A. S_1 , S_2 and S_3
- B. Only S_1 and S_2
- C. Only S_2 and S_3
- D. Only S_1 and S_3
- E. Only S_1

- **9.** Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \ 3^n}.$
 - A. [-1, 4]
 - B. (-1,4)
 - C. [-2, 4]
 - D. (-2, 4]
 - E. [-2,4)

10. Let $b_n > 0$ and a_n be such that

$$a_{n+1} = (-1)^{n+1} \left(\frac{n+1}{2n+7}\right) a_n \text{ for } n \ge 1 \text{ and } \lim_{n \to \infty} \frac{|a_n|}{b_n} = 2.$$

We can say that the following are true:

- A. $\sum_{n=1}^{\infty} a_n$ converges absolutely and $\sum_{n=1}^{\infty} b_n$ converges
- B. $\sum_{n=1}^{\infty} a_n$ converges conditionally and $\sum_{n=1}^{\infty} b_n$ converges
- C. $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ converges
- D. $\sum_{n=1}^{\infty} a_n$ converges absolutely and $\sum_{n=1}^{\infty} b_n$ diverges
- E. $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ diverges

- 11. The function $f(x) = \ln(2-x)$ is represented by the power series $\ln 2 \sum_{n=1}^{\infty} a_n x^n$ where $a_n = 1$
 - A. $a_n = \frac{1}{2^n}$
 - B. $a_n = (-1)^n \frac{1}{n \ 2^n}$
 - C. $a_n = \frac{1}{n^2} 2^n$
 - $D. \ a_n = \frac{1}{n \ 2^n}$
 - $E. a_n = \frac{1}{n^2}$

- 12. Use that $\frac{2x}{(1-x^2)^2} = \frac{d}{dx}(\frac{1}{1-x^2})$ to conclude that $\frac{2x}{(1-x^2)^2} =$
 - A. $\sum_{n=1}^{\infty} 2n \ x^{2n-1}$
 - B. $\sum_{n=1}^{\infty} (-1)^n (2n+1) x^{2n+1}$
 - C. $\sum_{n=1}^{\infty} (2n-1) x^{2n+1}$
 - D. $\sum_{n=1}^{\infty} n \ x^{2n+1}$
 - E. $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{n+1}$