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Potentially Useless Formulas∫
sec θ dθ = ln |sec θ + tan θ|+ C∫
sec3 θ dθ =

1

2
sec θ tan θ +

1

2
ln |sec θ + tan θ|+ C

sin2 θ =
1

2
(1− cos 2θ)

cos2 θ =
1

2
(1 + cos 2θ)

sin 2θ = 2 sin θ cos θ
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1. What is the angle, in radians, between the vectors < 3, 0,−3 > and < 1,−1, 0 >?

A. 0

B.
3π

4

C.
5π

6

D.
π

6

E.
π

3

2. Find the area of the parallelogram with vertices A(0, 0, 0), B(1, 1, 1), C(1, 2, 1), and
D(2, 3, 2)

A. 1

B.
√

2

C.
√

3

D.
√

5

E.
√

6
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3. The base of a solid S is a triangular region with vertices at (0, 0), (0, 1), and (2, 1). If the
cross-sections perpendicular to the x-axis are squares, calculate the volume of S.

A.
5

6

B.
5

8

C.
1

2

D.
2

3

E.
3

4

4. Find the area of the region bounded by y = cos 2x, y = sin 4x, between x = 0 and x = π
4
.

You may need to use the double-angle identity sin 2θ = 2 sin θ cos θ

A. 1

B. 2

C.
1

8

D.
1

4

E.
1

6
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5. The area between the graphs of y = x2 and y = 2x is revolved around the x-axis. If the
method of cylindrical shells is used, the integral representing the volume of the resulting
solid is

A.

∫ 4

0

2πy(y − y2

4
) dy

B.

∫ 4

0

π(y4 − 4y2) dy

C.

∫ 2

0

2πy(y2 − 2y) dy

D.

∫ 4

0

2πy(
√
y − y

2
) dy

E.

∫ 2

0

π(y2 − 2y) dy

6. What value of the positive constant c makes the volume of the solid obtained by rotating
the area between x = 0, y = e3x, and x = c about the x-axis equal to π?

A. 1
6

ln 2

B. 1
3

ln π

C. 1
6

ln 7

D. 1
7

ln 6

E. 1
6

ln π
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7. Find the integral:

∫ e

1

x1/2 lnx dx

A.
1

9
e3/2 +

4

9

B.
2

9
e3/2 +

4

9

C.
4

9
e3/2 +

4

9

D.
5

9
e3/2 +

4

9

E.
7

9
e3/2 +

4

9

8. Which of the following is the partial fraction expansion of
4x3 − x

x2(x2 + 1)2
?

A.
A

x2
+

B

x2 + 1
+

C

(x2 + 1)2

B.
A

x
+
B

x2
+

C

x2 + 1
+

D

(x2 + 1)2

C.
A

x
+
B

x2
+

C

x2 + 1
+

Dx+ E

(x2 + 1)2

D.
A

x
+
B

x2
+
Cx+D

x2 + 1
+

E

(x2 + 1)2

E.
A

x
+
B

x2
+
Cx+D

x2 + 1
+

Ex+ F

(x2 + 1)2
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9. Use a long division to compute

∫
x2

x+ 2
dx

A.
x2

2
− 2x+ 4 ln |x+ 2|+ C

B.
1

6
x3 + 2 ln |x+ 2|+ C

C.
x2

2
+

1

6
x3 + C

D. x+ 4 ln |x+ 2|+ C

E.
1

3
x3 + ln |x+ 2|+ C

10. Which of the following statements are true?

I. u = tanx is an appropriate substitution for the integral

∫
tan3 x sec4 x dx

II. u = sin(3x) is an appropriate substitution for the integral

∫
cos5(3x) sin4(3x) dx

III.

∫ π/2

0

sin2 θ dθ =
π

4

A. I and II only

B. I and III only

C. II and III only

D. None is true

E. All are true
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11. What does the integral

∫
x2√

x2 + 25
dx become after a trigonometric substitution?

A. 25

∫
(tan2 θ)(sec θ) dθ

B. 5

∫
(tan2 θ)(sec θ) dθ

C. 25

∫
tan2 θ

sec θ
dθ

D. 5

∫
tan2 θ

sec θ
dθ

E. 25

∫
sin2 θ dθ

12. A spring has a natural length of 10 m. If the work done in stretching the spring from 10

m (its natural length) to 11 m is
5

2
joules, what is the force in newtons needed to stretch

the spring from its natural length to a length of 20 m?

A. 100

B. 125

C. 50

D. 25

E. 5
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13. How many of the following statements are FALSE?

I. If f is continuous and 0 < f(x) < g(x) on the interval [0,∞), and∫ ∞
0

g(x) dx = M <∞, then

∫ ∞
0

f(x) dx exists.

II. If lim
x→∞

f(x) = 1, then

∫ ∞
0

f(x) dx exists.

III. If

∫ 1

0

1

xp
dx exists, then

∫ 1

0

1

xq
dx exists, where q > p.

IV. If

∫ ∞
0

1

xp
dx exists, then

∫ ∞
0

1

xq
dx exists, where q > p.

A. 0

B. 1

C. 2

D. 3

E. 4

14.

I.
∞∑
n=1

(−1)n−1
√
n− 3

n
; II.

∞∑
n=1

(−1)n−1
1

[ln(n+ 1)]2
; III.

∞∑
n=1

(−1)n−1 sin(n).

Which of the following statements is true?

A. All three are convergent

B. Only II is convergent

C. I and II are convergent

D. II and III are convergent

E. All three are divergent
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15. Determine if the geometric series converges or diverges. If it converges, find its sum.

1

3
+

(
1

3

)2

+

(
1

3

)3

+ · · ·

A. Converges to 2
3

B. Converges to 2

C. Converges to 1
2

D. Converges to 3
2

E. Diverges

16. Let SN be the N-th partial sum of the series

∞∑
n=1

(−1)n−1
1

2n− 1

Compute S50 − S49

A. − 1

50

B. − 1

99

C.
1

97

D.
1

101
E. 1
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17. Which of the following statements are correct?

I.
∞∑

n=9001

cos(nπ)

n2
converges conditionally

II. The ratio test can be used to show that
∞∑
n=1

1

n10
converges

III. A series is convergent if the sequence of its partial sums is bounded

A. All of them

B. None of them

C. I and II only

D. II and III only

E. III only

18. Find the interval of convergence for the series
∞∑
n=0

(x− 4)n

n53n

A. [3, 5]

B. (−7, 7)

C. (−∞, 7)

D. [1, 7]

E. (1, 7)
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19. Find the Taylor series for f =
1

x
centered at x = 3

A.
∞∑
n=0

(x− 3)n

3n+1

B.
∞∑
n=0

(x− 3)n

3n

C.
∞∑
n=0

(−1)n(x− 3)n

3n+1

D.
∞∑
n=0

(−1)n(x− 3)n

3n

E.
∞∑
n=0

(x+ 3)n

3n+1

20. Find the Taylor polynomial for f(x) =
1

2− x
of degree 3 centered at x = 0. Recall that

if |x| < 1 then
∞∑
k=0

x =
1

1− x
.

A. x
2

+ x2

4
+ x3

8
+ x4

16

B. x
2
− x2

4
+ x3

8
− x4

16

C. 1
2
− x

4
+ x2

8
− x3

16

D. 1
2

+ x
4

+ x2

8
+ x3

16

E. 1
2

+ x
4

+ x2

16
+ x3

96
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21. Which of the following is equal to

∫ 1

0

sinx

x
dx? Recall that sin x =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

for all x.

A.
∞∑
n=0

(−1)n
1

(4n+ 1)(2n+ 1)!

B.
∞∑
n=0

(−1)n
1

(2n+ 1)(2n+ 1)!

C.
∞∑
n=0

(−1)n
2

(8n+ 1)(2n+ 1)!

D.
∞∑
n=0

(−1)n
2

(2n+ 1)(2n+ 1)!

E.
∞∑
n=0

(−1)n
2

(4n+ 1)(2n+ 1)!

22. In polar coordinates, the equation r = sin(θ) + 2 cos(θ) represents a circle with radius

A. 1
2

B.
√
2
2

C.
√
3
2

D. 1

E.
√
5
2
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23. Find the length of the following curve

r = e4θ, 0 ≤ θ ≤ π

A. 1
16

(e8π − 1)

B.
√
17
4

(e4π − 1)

C. 32
3

(π2 − 1)

D. e8π −
√

3

E.
√

17(e4π − 1)

24. Find the area of the region inside both r = 8 cos(θ) and r = 8 sin(θ). You may find

the following results useful in your calculation:

∫
cos2(x) dx =

1

2
x +

1

4
sin(2x) + C,∫

sin2(x) dx =
1

2
x− 1

4
sin(2x) + C

A. 8(π − 2)

B. 8(π + 2)

C.
8

3
(4π − 3

√
3)

D. 4(2−
√

2)

E. 16π
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25. Which of the following is the graph of r = −4 cos(3θ)?

A B C

D E
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