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1.

∫
e3x sinx dx

A.
e3x(sinx+ 3 cosx)

8
+ C

B.
e3x(sinx+ cosx)

10
+ C

C.
e3x(3 sinx− cosx)

10
+ C

D.
e3x(sinx+ 3 cosx)

10
+ C

E.
e3x(sinx+ cosx)

8
+ C

F.
e3x(cosx− 3 sinx)

8
+ C

2.

∫ 4

1

√
x2 + 4x− 5

x+ 2
dx

A. 3
√

3− π
B.
√

3

C.
1

2

D.

√
3

2

E.
√

3− π

3

F.

√
3

3

2



3. The graph below is r = θ. Find the area of the small shaded region.

A.
4π3

3

B.
π3

3

C.
π3

48

D.
π3

24

E.
π3

12

F.
π3

6

4. Find the function f(x) represented by the following power series

∞∑
k=0

x2k+3

2k

A. f(x) =
x3

2− x2
for |x| <

√
2.

B. f(x) =
2

2− x2
for |x| <

√
2.

C. f(x) =
2x3

2− x2
for |x| <

√
2.

D. f(x) =
2

2− x
for |x| < 2.

E. f(x) =
2x3

2− x
for |x| < 2.

F. f(x) =
x3

2− x
for |x| < 2.
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5. Find the volume of the solid generated when the region bounded by the following two curves
is revolved about the y-axis: y = x− x2, y = 0.

A.
11π

30

B.
2π

15

C.
π

3

D.
5π

6

E.
π

30

F.
π

6

6. Find the length of the “cardioid” curve given by

r = 1 + cos θ

A. 4π

B. 8

C. 4

D. 2π

E. 5π/4

F. 6
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7. Convert the polar equation

r =
1

cos θ + sin θ

to a Cartesian equation.

A. x3 + x2y + xy2 + y3 = 1

B.
√
x2 + y2 =

1

x+ y

C. y = 1− x
D. y =

√
1− x2

E.

(
x− 1

2

)2

+

(
y − 1

2

)2

=
1

2

F. y = x+ 1

8. Which of the following represents (x, y) = (−
√

3,−3) in polar coordinates?

A. (r, θ) =
(
−
√

3,
π

3

)
B. (r, θ) =

(
−2
√

3,−π
3

)
C. (r, θ) =

(√
3,−π

3

)
D. (r, θ) =

(
2
√

3,
π

3

)
E. (r, θ) =

(
2
√

3,
4π

3

)
F. (r, θ) =

(
−2
√

3,
4π

3

)
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9.

∫ π/4

0

sin2 θ cos2 θ dθ

A.
3π

32

B.
π

32

C.
3π + 8

32

D.
π + 1

32

E.
π − 1

32

F.
3π − 8

32

10. Evaluate (find the sum) of the following series:

∞∑
k=0

1

22k+1

A.
3

4

B.
2

3

C.
3

2

D.
4

3

E.
1

2
F. 1
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11. Find a series expression for ∫ 1

0

tan−1(x2) dx

Hint: tan−1 x =
∞∑
k=0

(−1)kx2k+1

2k + 1
for |x| ≤ 1.

A.
1

2 · 1
− 1

4 · 3
+

1

6 · 5
− 1

8 · 7
+

1

10 · 9
− . . .

B.
1

3 · 2
− 1

7 · 4
+

1

11 · 6
− 1

15 · 8
+

1

19 · 10
− . . .

C.
1

3 · 2
− 1

5 · 4
+

1

7 · 6
− 1

9 · 8
+

1

11 · 10
− . . .

D.
1

3 · 1
− 1

5 · 3
+

1

7 · 5
− 1

9 · 7
+

1

11 · 9
− . . .

E.
1

2 · 1
− 1

6 · 3
+

1

10 · 5
− 1

14 · 7
+

1

18 · 9
− . . .

F.
1

3 · 1
− 1

7 · 3
+

1

11 · 5
− 1

15 · 7
+

1

19 · 9
− . . .

12. Five of these series converge, and one diverges. Which series diverges?

A.
1

42
+

2

52
+

3

62
+

4

72
+

5

82
+

6

92
+ . . .

B.
2

1!
+

22

2!
+

23

3!
+

24

4!
+

25

5!
+

26

6!
+ . . .

C. 1 +
1

2
√

2
+

1

3
√

3
+

1

4
√

4
+

1

5
√

5
+

1

6
√

6
+ . . .

D. 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

E. 0.9 + (0.9)2 + (0.9)3 + (0.9)4 + (0.9)5 + (0.9)6 + . . .

F. − 1

ln 1.2
+

1

ln 1.4
− 1

ln 1.6
+

1

ln 1.8
− 1

ln 2
+

1

ln 2.2
− . . .
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13. A cylindrical tank (resting on its circular base) has height 4m and radius 1m. If the tank is
half full of water, how much work is required to pump all the water out the top? Use ρ for
the liquid density (kg/m3) and g for the gravitation constant (N/kg).

A. 10πρg N·m
B. 12πρg N·m
C. 4πρg N·m
D. 2πρg N·m
E. 8πρg N·m
F. 6πρg N·m

14. ~a = 〈5
2
, 3, 4〉 and ~b = 〈1, 2, 2〉. Find a unit vector normal to ~a and ~b. (“Normal” means

orthogonal to ~a and orthogonal to ~b)

A.

〈
−2

5
,−1

5
,
2

5

〉
B.

〈
−4

9
,−2

9
,
4

9

〉
C.

〈
− 4

33
,− 2

33
,

4

33

〉
D.

〈
4

9
,
2

9
,−4

9

〉
E.

〈
−2

3
,
1

3
,
2

3

〉
F.

〈
2

3
,
1

3
,−2

3

〉
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15. Find the length of the curve y = ln(secx) from (0, 0) to

(
π

4
,
ln 2

2

)
A. ln(1 +

√
2)

B.

√
4− 2

√
2

C.
√

2

D.
π

6
+

1

2
ln

(√
3 + 1√
3− 1

)

E.
π + ln 4

4

F.
π + 4

4

16. Recall that cosx =
∞∑
k=0

(−1)kx2k

(2k)!
for all x, and tan−1 x =

∞∑
k=0

(−1)kx2k+1

2k + 1
for |x| ≤ 1.

Find the limit

lim
x→0

cos(x3) + tan−1
(
x6

2

)
− 1

x12

A.
1

4

B. − 7

24
C. ∞

D.
1

24

E. −1

3
F. 0
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17.

Find the volume of a solid whose base is the
region in the first quadrant bounded by the
curve y =

√
3− x and the line x = 2, and

whose cross sections through the solid perpen-
dicular to the x-axis are squares.

A. 2
√

3

B. 6

C. 2
√

3− 2

3
D. 2

E.
2

3
F. 4

18. Find the Taylor Series for f(x) = sin(πx) centered at a = 1.

A.
∞∑
k=0

(−1)k+1πk

k!
(x− 1)k

B.
∞∑
k=0

(−1)k+1π2k+1

(2k + 1)!
(x− 1)2k+1

C.
∞∑
k=0

(−1)kπk

(2k + 1)!
(x− 1)2k+1

D.
∞∑
k=0

(−1)kπ2k+1

(2k + 1)!
(x− 1)2k+1

E.
∞∑
k=0

(−1)kπk

k!
(x− 1)k

F.
∞∑
k=0

(−1)k+1πk

(2k + 1)!
(x− 1)2k+1
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19. Describe the following two series:
∞∑
k=1

(−1)k tan

(
1

k

)
and

∞∑
k=2

(
−1

ln k

)k
A. One series converges conditionally, and one series converges absolutely.

B. Both series converge conditionally.

C. One series diverges, and one series converges conditionally.

D. Both series converge absolutely.

E. One series diverges, and one series converges absolutely.

F. Both series diverge.

20. The angle between vector ~v and vector ~w is
π

3
. Suppose ~w ·~u = 6 where ~u is the unit vector

that points in the direction of ~v. Find |~w|.

A. 3

B. 6

C. 6
√

3

D. 12

E. 6
√

2

F. 4
√

3
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21.

∫
3x2 + 2x+ 3

x4 + 2x2 + 1
dx

A. tan−1
(

1

x2 + 1

)
+ C

B.
3 tan−1 x

x2 + 1
+ C

C.
tan−1 x

x2 + 1
+ C

D. 3 tan−1
(

1

x2 + 1

)
+ C

E. tan−1 x− 3

x2 + 1
+ C

F. 3 tan−1 x− 1

x2 + 1
+ C

22. Suppose p2(x) is the Taylor polynomial of order n = 2 centered at a = 1 for the function

f(x) = x10.

Compute p2(0).

A. 0

B. 1

C. 101

D. 81

E. 56

F. 36
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23. Find the interval of convergence for the following power series:

∞∑
k=1

xk√
k

A. Only x = 0

B. (−∞,∞)

C. [−1, 1)

D. (−1, 1)

E. [−1, 1]

F. (−1, 1]

24. Find the polar equation with a graph given by the following curve:

A. r = 1 + 3 sin (2θ)

B. r = 1 + 2 sin (3θ)

C. r = 2 + 3 cos (θ)

D. r = 1 + 2 cos (3θ)

E. r = 2 + 3 sin (θ)

F. r = 1 + 3 cos(2θ)
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25. The MacLaurin series for tanx is as follows:

tanx = x+
x3

3
+

2x5

15
+

17x7

315
+ . . . , for |x| < π

2

Which of the following is the MacLaurin series for sec2(x3) ?

A. 1 + x5 +
2x7

3
+

17x9

45
+ . . .

B. 1 + x6 +
2x12

3
+

17x18

45
+ . . .

C. 3x2 + 3x8 + 2x14 +
17x20

15
+ . . .

D. 1 +
x6

2
+
x12

12
+
x18

45
+ . . .

E. x3 + x5 +
2x7

3
+

119x9

315
+ . . .

F.
x4

6
+
x10

36
+
x16

135
+

17x22

7560
+ . . .
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