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1. Find a vector that has the same direction as 〈−2, 6,−3〉 but has length 3.

A. 〈−6
7
, 18

7
,−9

7
〉

B. 〈−6, 18,−9〉
C. 〈− 2√

3
, 2
√

3,−
√

3〉

D. 〈−2
3
, 2,−1〉

E. 〈−2
7
, 6
7
,−3

7
〉

2. Suppose ~a ·~b = 5 and ~a×~b =~ı + 5~ + 7~k. What is the angle between ~a and ~b ?

A.
π

4

B.
2π

3

C.
π

6

D.
π

3

E.
π

2

2



3. Find the area of the region bounded by the curve y = xe−x and the x-axis from x = 0 to
x = 4.

A. −5e−4

B. 4e−4

C. 1− 5e−4

D. 1− 3e−4

E. 3e−4

4.

∫
x tan2 x dx

A. sec2 x− tanx− x2

2
+ C

B. x tanx+ ln | cosx| − x2

2
+ C

C. x sec2 x+ ln | secx| − x2

2
+ C

D. x sec2 x− tanx+ C

E. x tanx+ ln | secx+ tanx|+ C
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5.

∫
dx

x(x2 + 1)2

A. ln

(
|x|√
x2 + 1

)
+

1

2(x2 + 1)
+ C

B. ln

(
|x|√
x2 + 1

)
+

1

(x2 + 1)
+ C

C. ln

(
1√

x2 + 1

)
+

1

2(x2 + 1)
+ C

D. ln

(
1√

x2 + 1

)
+

1

(x2 + 1)
+ C

E. ln

(
|x|√
x2 + 1

)
+ C

6. Find the volume of the solid generated by revolving about the x-axis the region bounded by
y = sinx cosx and the x-axis, between x = 0 and x = π/2.

A.
π2

16

B.
π2

2

C.
π2

4

D.
π2

32

E.
π2

8
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7. What is the average value of the function f(x) =
1

(1− x2)3/2
over the interval 0 ≤ x ≤ 3

5
?

A.
4

5

B.
5

4
C. 1

D.
4

3

E.
3

4

8. Evaluate

∫ 2

√
2

dx

x
√
x2 − 1

A.
π

12

B.
π

3

C.
π

8

D.
π

4

E.
π

6
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9. Evaluate

∫ 3

1

dx

(x− 1)2/3

A. 3
√

3

B. 3
√

2

C. This improper integral diverges.

D. 3 3
√

3

E. 3 3
√

2

10. Find the area of the surface obtained by rotating the curve y =
x3

3
about the x-axis, for

0 ≤ x ≤ 1.

A.
π
√

2

6
− π

6

B.
π · 2
√

2

9
− π

9

C.
π
√

2

6
− π

12

D.
π

12

E.
π

9
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11. Let an =
cos(1/n)

2n+ 1
. Which one of the following is true?

A. The sequence {an} is divergent and the series
∞∑
n=1

an is divergent.

B. The sequence {an} is convergent and the series
∞∑
n=1

an is divergent.

C. The sequence {an} is divergent and the series
∞∑
n=1

an is convergent.

D. The sequence {an} is convergent and the series
∞∑
n=1

an is convergent.

E. None of these statements are true.

12. Which statement is true about these three series?

(i)
∞∑
k=1

k2e−k
3

, (ii)
∞∑
`=2

1√
`− 1/`

, (iii)
∞∑
m=1

m!

3m

A. (ii) converges. The others diverge.

B. All three diverge.

C. (iii) converges. The others diverge.

D. (i) converges. The others diverge.

E. Two of them converge and one diverges.
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13. Which statement is true about these two series?

∞∑
m=1

(−1)m

m
,

∞∑
n=2

(−1)n

lnn

A. Both are conditionally convergent.

B. One is conditionally convergent and one is divergent.

C. One is conditionally convergent and one is absolutely convergent.

D. One is divergent and one is absolutely convergent.

E. Both are absolutely convergent.

14. Only one of these series diverges. Which one?

A.
∞∑
n=1

n2

en

B.
∞∑
n=1

1

n
√
n2 + 1

C.
∞∑
n=1

(1.01)n

n+ 3n

D.
∞∑
n=1

tan(1/n)

E.
∞∑
n=1

(
e1/n − 1

)n
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15. Find the sum.

1 + 2 · 1

3
+ 3 · 1

32
+ 4 · 1

33
+ 5 · 1

34
+ . . .

Hint: What if the 1
3
’s were x’s?

A. 3

B. 2

C.
7

3

D.
9

4

E.
3

2

16. Find the interval of convergence for the power series
∞∑
n=1

nnxn

A. (−1, 1)

B. (−1, 1]

C. [−1, 1)

D. {0}
E. [−1, 1]
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17. Find the first few terms of the Taylor series centered at a = 2 for the function f(x) = 1/x.

A.
1

2
− 1

4
(x− 2) +

1

4
(x− 2)2 − 3

8
(x− 2)3 + . . .

B.
1

2
− 1

4
(x− 2) +

1

8
(x− 2)2 − 1

16
(x− 2)3 + . . .

C.
1

2
− 1

4
(x− 2) +

1

12
(x− 2)2 − 1

48
(x− 2)3 + . . .

D.
1

2
− 1

4
(x− 2) +

1

16
(x− 2)2 − 1

96
(x− 2)3 + . . .

E.
1

2
− 1

4
(x− 2) +

1

6
(x− 2)2 − 1

8
(x− 2)3 + . . .

18. Find lim
x→0

x6 − 12x2 + 24 tan−1(x2/2)

x10

Hint: tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1

A.
3

16

B.
3

20
C. The limit does not exist.

D.
3

10
E. 0
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19. Find the length of the curve x = et cos t, y = et sin t for 0 ≤ t ≤ ln 2.

A.
√

2

B.

√
2

2

C.

√
3

2

D. 2
√

2

E.
3

2

20. Find a Cartesian equation for the curve r = tan θ sec θ

A. y = tanx

B.
√
x2 + y2 =

y

x2

C. x = y2

D. y = x2

E. y =
√

1 + x2
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21. Find the graph of r = 1 + sin θ

22. The curve pictured below is r = 2 + cos θ. Find the area of the shaded region:

A.
9π

8
− 2

B.
9π

8

C.
9π

4
− 2

D. π − 1

E.
9π

4
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23. Find the length of the polar curve r = θ2, where 0 ≤ θ ≤ π.

A.
π3/2

3

B.
π3

3

C. (π2 + 4)3/2

D.
(π2 + 2)3/2 − 2

√
2

3

E.
(π2 + 4)3/2 − 8

3

24. Find one of the foci of the hyperbola

3x2 − y2 − 18x− 6y + 9 = 0

A. (3,−3)

B. (2
√

3,−3)

C. (
√

3,−3)

D. (3 + 2
√

3,−3)

E. (3 +
√

3,−3)
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25. Four of these complex numbers are equal to each other. Which one is not?

A. 2e2πi/3

B.
4

−1−
√

3i

C. −1 +
√

3i

D. 2
(
cos
(
2π
3

)
+ i sin

(
2π
3

))
E. 2e4πi/3
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