NAME	Page 1	/16
10-DIGIT PUID	Page 2	/25
RECITATION INSTRUCTOR	Page 3	/26
DECIMATION OF C	Page 4	/33
RECITATION TIME	TOTAL	/100

DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes, calculators, or any electronic devices may be used on this test.
- (10) 1. Let \vec{a} , \vec{b} , \vec{c} be three-dimensional vectors. For each statement below, circle T if the statement is always true, or F if it is not always true.
 - (i) If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, then $\vec{a} \cdot \vec{b} = \cos \theta$

 \mathbf{T} \mathbf{F}

(ii) If $\vec{i} \cdot \vec{b} = \vec{i} \cdot \vec{c}$, then $\vec{b} = \vec{c}$

 \mathbf{T} \mathbf{F}

(iii) If $\vec{a} \cdot \vec{b} = 0$, then $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2$

 \mathbf{T} \mathbf{F}

(iv) The vector $\vec{a} \times (\vec{b} \times \vec{c})$ is always parallel to $\vec{b} \times \vec{c}$

т 1

(v) $(\vec{a} \times \vec{b}) \times \vec{a} = \vec{0}$

T F

(6) 2. Find an equation of the sphere that passes through the origin and whose center is (1,2,3).

	MA	166	Exam 1	Spring 2009	Name				Page 2/4
(4)	3.	Find t	the values o	of c for which th	e vectors ($0,2,3\rangle$ and $\langle 2$	2, c, -	$2\rangle$ are α	orthogonal.
									c =
(4)	4.	If $\vec{v} =$	$\langle 1, 2, 2 \rangle$ an	$\mathbf{d} \ \vec{w} = \langle 1, 0, 1 \rangle,$	find the an	gle $ heta$ between	\vec{v} an	$d \vec{w}$.	
									$\theta =$
(4)	5.								o force acting at work done by the
									,
(13)	6.			ats $P(1, -2, 1)$, or \rightarrow	Q(-1, 3, 2)	and $R(2, 1, 1)$).		
		(a) Fi	$\operatorname{ind} \overrightarrow{PQ} imes \overrightarrow{I}$	PR.					
		(b) Fi	nd the area	a of the triangle	with verti	ces P, Q, R .			
		(c) Fi	nd two unit	t vectors orthog	onal to the	e plane throu	$\operatorname{gh} \operatorname{th}$	e point	s P, Q , and R .

(10) 7. Find the area of the region in the first quadrant bounded by the curves $y = x^3$ and $y = x^2 + 2x$.

(8) 8. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating about the y-axis, the region bounded by the curves

$$x = \sin y$$
, $0 \le y \le \pi$, and $x = 0$.

(8) 9. Let R be the region bounded by the curves y = x - 3, y = 0, and x = 0. Use the method of disks or washers to set up an integral for the volume of the solid obtained by rotating R about the line y = 2. Do not evaluate the integral.

(8) 10. Let R be the region bounded by the curves $y = x^2$ and $y = 2 - x^2$. Use the method of cylindrical shells to set up an integral for the volume of the solid obtained by rotating R about the line x = 1. Do not evaluate the integral.

(8) 11. If the work required to stretch a spring 1 ft beyond its natural length is 12 ft-lbs, how much work is needed to stretch it 9 in beyond its natural length?

 $(7) \quad 12. \quad \int x^3 \ln x dx =$

(10) 13. First make a substitution and then use integration by parts to evaluate the integral $\int \cos \sqrt{x} \ dx$.