Your name ______________________ Your TA’s name ______________________
Student ID # ________________ Section # and recitation time ____________

1. You must use a \#2 pencil on the scantron sheet (answer sheet).

2. Check that the cover of your exam booklet is GREEN and that it has VERSION 01 on
 the top. Write 01 in the TEST/QUIZ NUMBER boxes and blacken in the appropriate
 spaces below.

3. On the scantron sheet, fill in your TA’s name (NOT the lecturer’s name) and the
 course number.

4. Fill in your NAME and PURDUE ID NUMBER, and blacken in the appropriate spaces.

5. Fill in the four-digit SECTION NUMBER.

6. Sign the scantron sheet.

7. Blacken your choice of the correct answer in the space provided for each of the questions
 1–12. All the answers must be marked on the scantron sheet. In case what is
 marked on the scantron sheet is different from what is marked on the exam booklet, we
 compute the final score based upon what is marked on the scantron sheet.

8. While marking all your answers on the scantron sheet, you should
 show your work on the exam booklet. In case of a suspicious activity of academic
 dishonesty and/or under certain circumstances, we require that the correct answer on the
 scantron sheet must be supported by the work on the exam booklet.

9. There are 12 questions, each worth 8 points. The maximum possible score is
 8 \times 12 + 4 (for taking the exam) = 100 points.

10. NO calculators, electronic device, books, or papers are allowed. Use the back of the test
 pages for scrap paper.

11. After you finish the exam, turn in BOTH the scantron sheet and the exam booklet.

12. If you finish the exam before 7:25, you may leave the room after turning in the scantron
 sheets and the exam booklets. If you don’t finish before 7:25, you should REMAIN SEATED
 until your TA comes and collects your scantron sheet and exam booklet.
Exam Policies

1. Students must take pre-assigned seats and/or follow TAs’ seating instructions.

2. Students may not open the exam until instructed to do so.

3. No student may leave in the first 20 min or in the last 5 min of the exam.

4. Students late for more than 20 min will not be allowed to take the exam; they will have to contact their lecturer within one day for permission to take a make-up exam.

5. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs will collect the scantron sheet and the exam booklet.

6. Any violation of the above rules may result in score of zero.

Rules Regarding Academic Dishonesty

1. You are not allowed to seek or obtain any kind of help from anyone to answer questions on the exam. If you have questions, consult only your instructor.

2. You are not allowed to look at the exam of another student. You may not compare answers with anyone else or consult another student until after you have finished your exam, handed it in to your instructor and left the room.

3. You may not consult notes, books, calculators. You may not handle cell phones or cameras, or any electronic devices until after you have finished your exam, handed it in to your instructor and left the room.

4. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty can be very severe and may include an F in the course. All cases of academic dishonesty will be reported immediately to the Office of the Dean of Students.

I have read and understand the exam policies and the rules regarding the academic dishonesty stated above:

STUDENT NAME: __

STUDENT SIGNATURE: __
Questions

1. Write inequalities to describe the solid lower hemisphere of the sphere of radius 3 centered at $(-2, 5, 1)$.

 NOTE: We choose the z-axis to be the vertical one, while the xy-plane is horizontal. The word “lower” is with respect to the vertical z-axis.)

 A. $(x + 2)^2 + (y - 5)^2 + (z - 1)^2 \leq 9$, $z \leq 1$
 B. $(x - 2)^2 + (y + 5)^2 + (z + 1)^2 \leq 9$, $z \leq 0$
 C. $x^2 + y^2 + z^2 \leq 9$, $z \geq 1$
 D. $x^2 + y^2 + z^2 \leq 3$, $z \leq 1$
 E. $(x + 2)^2 + (y - 5)^2 + (z - 1)^2 \geq 9$, $z \leq 0$
2. Find a vector that has the same direction as \overrightarrow{AB} but has length 4, where A is the point $(2, 1, -4)$ and B is the point $(-3, 2, -1)$.

A. $\frac{2}{3} \overrightarrow{AB}$

B. $-\frac{\sqrt{35}}{4} \overrightarrow{AB}$

C. $-\frac{4}{\sqrt{35}} \overrightarrow{AB}$

D. $\frac{\sqrt{35}}{4} \overrightarrow{AB}$

E. $\frac{4}{\sqrt{35}} \overrightarrow{AB}$
3. Find the $\text{Proj}_\vec{a} \vec{b}$ where $\vec{a} = \langle 1, 2, 3 \rangle$ and $\vec{b} = \langle 3, 4, 5 \rangle$.

A. $\frac{26}{\sqrt{14}} \vec{a}$

B. $\frac{13}{7} \vec{a}$

C. $\frac{26}{\sqrt{50}} \vec{a}$

D. $\frac{13}{\sqrt{25}} \vec{a}$

E. $\frac{26}{25} \vec{a}$
4. Find the angle θ between the following two tangent lines:

one is to the curve $y = x^2$ at point $(1, 1)$ and the other to the curve $y = \sqrt{x}$ at point $(1, 1)$.

A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\arccos\left(\frac{7}{\sqrt{35}}\right)$
D. $\arccos\left(\frac{4}{5}\right)$
E. $\arcsin\left(\frac{4}{5}\right)$
5. Let $\vec{a} = \langle 1, 2, 1 \rangle$.

Find a vector \vec{v} such that
(i) \vec{v} is perpendicular to \vec{a}, and
(ii) $\vec{a} \times \vec{v} = \langle 3, 1, -5 \rangle$.

A. $\langle 11, -8, 5 \rangle$
B. $\frac{1}{6} \langle 11, -8, 5 \rangle$
C. $-\frac{1}{6} \langle 11, -8, 5 \rangle$
D. $\langle -2, 1, 0 \rangle$
E. There are many such vectors \vec{v}, and we cannot specify one unless some extra condition is given.
6. Find the area of the region bounded by the curves $y = |x|$ and $y = x^2 - 6$.

A. $\frac{27}{2}$
B. 27
C. $\frac{37}{3}$
D. 24
E. $\frac{35}{2}$
7. If the work required to stretch a spring 3 ft beyond natural length is 36 ft-lb, how much work is needed to stretch it 3 inches beyond natural length?

A. $\frac{3}{8}$ ft-lb
B. 54 ft-lb
C. 36 ft-lb
D. $\frac{1}{4}$ ft-lb
E. 4 ft-lb
8. Consider the region \mathcal{R} bounded by the curves $y = x^2$ and $x = y^2$. Find the formulas to compute the volume of the solid obtained by rotating the region \mathcal{R} around $y = -5$

(a) by Washer method, and
(b) by Cylindrical Shell method.

A. (a) $\int_{0}^{1} \pi \left\{ (\sqrt{x} + 5)^2 - (x^2 + 5)^2 \right\} \, dx$
 (b) $\int_{0}^{1} 2\pi (y + 5)(\sqrt{y} - y^2) \, dy$

B. (a) $\int_{-5}^{1} \pi \left\{ (\sqrt{x} + 5)^2 - (x^2 + 5)^2 \right\} \, dx$
 (b) $\int_{-5}^{1} 2\pi (y + 5)(\sqrt{y} - y^2) \, dy$

C. (a) $\int_{0}^{1} \pi \left\{ (\sqrt{x})^2 - (x^2)^2 \right\} \, dx$
 (b) $\int_{0}^{1} 2\pi y(\sqrt{y} - y^2) \, dy$

D. (a) $\int_{0}^{1} 2\pi x(\sqrt{x} - x^2) \, dx$
 (b) $\int_{0}^{1} \pi \left\{ (\sqrt{y} + 5)^2 - (y^2 + 5)^2 \right\} \, dy$

E. (a) $\int_{0}^{1} 2\pi (y + 5)(\sqrt{y} - y^2) \, dy$
 (b) $\int_{0}^{1} \pi \left\{ (\sqrt{x} + 5)^2 - (x^2 + 5)^2 \right\} \, dx$
9. A solid has a base on the xy-plane bounded by the semi-circle $y = \sqrt{4 - x^2}$ and the x-axis. Cross sections perpendicular to $y = 0$ are isosceles right triangles with hypotenuse on the base.

Find the volume of the solid.

A. $\frac{128}{3}$

B. $\frac{64}{3}$

C. $\frac{32}{3}$

D. $\frac{16}{3}$

E. $\frac{8}{3}$
10. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y = \sin x$ and $y = 0$ where $0 \leq x \leq \pi$.

A. $2\pi^2 + 1$
B. $2\pi^2 - 1$
C. $\pi - 1$
D. $2\pi^2$
E. π
11. A tank formed by rotating $y = 4x^2$, $0 \leq x \leq 1$ about the y-axis is full of water. The density of the water is given by $\rho = 62.5$ lb/ft3.

Find the work required to pump all the water to a level 1 foot above the top of the tank.

A. $\frac{8\pi \rho}{3}$

B. $\frac{7\pi \rho}{24}$

C. $\frac{13\pi \rho}{12}$

D. $\frac{8\pi \rho}{9}$

E. $\frac{14\pi \rho}{3}$
12. The average value of the function \(f(x) = xe^x \) on the interval \([0, 2]\) is

A. \(\frac{1}{2} (e^2 - 1) \)

B. \(\frac{1}{4} (e^2 - 1) \)

C. \(\frac{1}{4} (e^2 + 1) \)

D. \(\frac{1}{2} (e^2 + 1) \)

E. \(e^2 + 1 \)