MA 166 Midterm 2, Test number 26, October 2015

1.
$$\lim_{n \to \infty} \frac{n^2 + 1}{e^n + 1} =$$

- A. 0
- B. 1/2
- C. 1/e
- D. 2/e
- E. The sequence is divergent.

2. The partial fraction decomposition of $\frac{1}{x^3+x}$ is

A.
$$\frac{1}{x^3} - \frac{1}{x}$$

B.
$$\frac{1}{x^3} + \frac{1}{2x^2} - \frac{1}{2x}$$

C.
$$\frac{1}{x} - \frac{x}{1+x^2}$$

D.
$$\frac{2}{1+x^2} - \frac{3}{x}$$

E.
$$\frac{1}{x} - \frac{2}{x^2} + \frac{3}{1+x^2}$$

- 3. $\int_0^1 \sqrt{3 + 2x x^2} \ dx =$
 - A. 1
 - B. 2
 - C. 2π
 - D. $\frac{\pi}{2}$
 - E. $\frac{\sqrt{3}}{2} + \frac{\pi}{3}$

4. Which statement is true, concerning the series

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n+2}$$
 and (2) $\sum_{n=1}^{\infty} \frac{n^2}{2n^3-1}$?

- A. Both converge.
- B. (1) converges, (2) diverges.
- C. (1) diverges, (2) converges.
- D. Both diverge.
- E. None of A,B,C,D is true.

- 5. A plate is bounded by the the x axis and the lines y=3x, x=1. If its density is $\rho=2$, its moment M_y about the y axis is
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 6

- 6. Suppose the derivative of a function g is $g'(x) = \sqrt{2\sin x + \sin^2 x}$. Find the length of the curve y = g(x), $0 \le x \le \pi$.
 - A. 2
 - B. $\pi 2$
 - C. 3
 - D. $\pi + 2$
 - E. $3 \pi/2$

- 7. To evaluate $\int \frac{4x^2 dx}{x + \sqrt{x+1}}$, your first step will be to substitute
 - A. $x = \sec^2 t$
 - B. $x = \tan t$
 - C. $x^2 = t$
 - D. $x + 1 = t^2$
 - E. $x + \sqrt{x+1} = t$

- 8. $\int_{-\infty}^{1} x e^{x/2} dx =$
 - A. $-2\sqrt{e}$
 - B. \sqrt{e}
 - C. $e^2 1$
 - D. e
 - E. The integral is divergent.

- 9. $\int_0^{1/2} \frac{4t 1}{1 + 4t^2} dt =$
 - A. $\ln\sqrt{2} + \frac{\pi}{4}$
 - B. $\ln 2 \frac{\pi}{6}$
 - C. $\ln 2 + \frac{2\pi}{3}$
 - D. $\ln \sqrt{2} \frac{\pi}{8}$
 - E. $\ln 2 + \frac{2\pi}{3}$

- 10. $\lim_{p\to\infty}\frac{p\sin p}{p^2+p+2}=$
 - A. 1
 - B. 0
 - C. -1
 - D. 1/4
 - E. The sequence diverges.

- 11. $\sum_{k=1}^{\infty} \frac{2^k}{3^{k+1}} =$
 - A. 2/3
 - B. 1/2
 - C. 2/9
 - D. 3/4
 - E. 4/3

- 12. Some of the following four statements concerning a series $\sum_{n=1}^{\infty} b_n$ must be false, no matter what the series is. Which?
 - I. The sequence $\{b_n\}$ and the series $\sum_{n=1}^{\infty} b_n$ both converge.
 - II. The sequence $\{b_n\}$ converges but series $\sum_{n=1}^{\infty} b_n$ diverges.
 - III. The sequence $\{b_n\}$ diverges but series $\sum_{n=1}^{\infty} b_n$ converges.
 - IV. The sequence $\{b_n\}$ and series $\sum_{n=1}^{\infty} b_n$ both diverge.
 - A. I. must be false.
 - B. II. must be false.
 - C. III. must be false.
 - D. IV. must be false.
 - E. Both II. and III. must be false.

	:	
•		