MATHEMATICS 182 TEST I

(35 pts) 1. Given the vectors $\vec{A} = i - 2j + k$ and $\vec{B} = i + 2j$ find:

- a) A vector in the direction opposite from \vec{A} of length 2,
- b) The equation of a plane through (1,0,2) perpendicular to \vec{A} ,
- c) The equations of a line through (1,0,2) parallel to \vec{B} ,
- d) the area of the triangle generated by \vec{A} and \vec{B} ,
- e) the equation of a plane through (1,0,2) parallel to \vec{A} and \vec{B} ,
- f) the intersection of the line of part c) with the plane

$$2x + 2y - z = 6.$$

2. If a curve is parametrized by

$$x = \frac{e^t \cos(t)}{\sqrt{2}}, \ y = \frac{e^t \sin(t)}{\sqrt{2}}, \ z = 6, \ -\infty < t < \infty,$$

find

- a) The unit tangent vector, \vec{T} , as a function of t,
- b) $\frac{ds}{dt}$ as a function of t,
- c) $K = \left| \frac{\overrightarrow{dT}}{ds} \right|$ as a function of t.
- d) \vec{n} as a function of t.
- e) \vec{b} as a function of t.

(20 pts) 3) a) If z is defined as a function of x and y by the equation $xz + yz^3 - 2xy = 0$ find $\frac{\partial z}{\partial x}$ at (1,1,1).

b) If $w = \sqrt{x^2 + y^2 + z^2}$, x = u + v, y = u - v, and z = uv find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ when u = 1 and v = 1.

DO ONE OF PROBLEMS 4), 5), OR 6) (INDICATE YOUR CHOICE)

(15 pts) 4) Let $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos(\theta)$ where θ is the angle between \vec{A} and \vec{B} .

If $\vec{A} = a_1 i + a_2 j + a_3 k$ and $\vec{B} = b_1 i + b_2 j + b_3 k$ show that $\vec{A} \circ \vec{B} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

(15 pts) 5) Find the distance of the point (0,3,1) from the plane defined by the two intersecting lines

$$x = 1 + 2t$$
, $y = 2 + t$, and $z = 1 - 2t$,

and

$$x = 2 + s$$
, $y = 4 + 2s$ $z = 4 + 3s$.

- (15 pts) 6) If $\vec{T}, \vec{n}, \vec{b}$, are the tangent vector, the principal normal, and the binormal of a space curve, C,
 - a) Show that $\frac{d\vec{T}}{ds} \cdot \vec{T} = 0$.
 - b) Show that $\frac{d\vec{B}}{ds} \cdot \vec{B} = 0$.
 - c) Show that $\frac{d\vec{B}}{ds}$ is parallel to \vec{n} .