(10 pts) 1) If \((x, y, z) = xe^y + z^2\) find

(a) the gradient, \(\nabla f\), at \((1, \ln 2, \frac{1}{2})\),

(b) the directional derivative of \(f\) in the direction of \(\vec{V} = \left(\frac{1}{\sqrt{2}} \right) i + \left(\frac{1}{\sqrt{2}} \right) k\) at \((1, \ln 2, \frac{1}{2})\).

(10 pts) 2) If \(z\) is defined as a function of \(x\) and \(y\) by

\[xy + z^3 x - 2yz = 0\]

find \(\frac{\partial z}{\partial x}\) at \((1, 1, 1)\).

(10 pts) 3) Find the tangent plane and normal line to \(z - x^2 - y^2 = 1\) at \((2, 2, 5)\).

(10 pts) 4) If \(f(x, y) = y(\sin x)\) find

(a) \(f_{xx}, f_{xy}, f_{yy}\) at \((0, 0)\)

(b) the quadratic approximation of \(f(x, y)\) at \((0, 0)\).
(15 pts) 5) If \(z = \sin(xy) + x(\sin y) \), \(x = u^2 + v^2 \), and \(y = uv \)

find \(\frac{\partial z}{\partial u} \) when \(u = 0 \) and \(v = 1 \).

(15 pts) 6) a) If \(f(x, y) = xy^2 + y(\cos x) \) find the linearization \(\ell(x, y) \) of \(f(x, y) \) at \((0, 1)\).

b) Estimate the error if \(|x| < \frac{1}{10} \) and \(|y - 1| < \frac{1}{10} \).

(15 pts) 7) Find the absolute maximum value and the absolute minimum value of the function \(f(x, y) = x^2 + xy + y^2 \) on the rectangular plots \(0 \leq x \leq 5 \) and \(-1 \leq y \leq 1 \).

(15 pts) 8) Find the points on \(x + 2y + 3z = 13 \) closest to \((1, 1, 1)\).