- (11 pts) 1. If $f(x, y, z) = \ln(x^2 + y^2 + 1) + y + 6z^2$ find
 - a) $\nabla f(1,1,0)$,
 - b) the direction of maximum change of f at (1,1,0)
 - c) $\frac{df}{ds}$ at (1,1,0) in the $\frac{i}{3} + \frac{2j}{3} \frac{2k}{3}$ direction.
- (11 pts) 2. Find the volume of the solid over the triangle bounded by y = 0, y = x, and x = 1 under z = 3 x y.
- (11 pts) 3. Find all maxima, minima, and points of inflection for $f(x,y) = 4xy x^3 y^3$.
- (11 pts) 4. If $f(x,y,z)=x^2y+yz-z$ subject to $x^2+y^2+z^2=6$ find $\left(\frac{\partial f}{\partial x}\right)_z$ at (x,y,z)=(2,1,1).
- (11 pts) 5. Find the tangent plane and normal line to $x^2 + y^2 + z^2 = 30$ at (1, 2, 5).
- (11 pts) 6. The volume of a cone is $\frac{\pi r^2 h}{3}$. If the volume is computed for r=4 and h=4, estimate the error if r, in fact, is 4.2 and h, in fact, equals 3.9.
- (11 pts) 7. Find the maximum and minimum values of f(x, y, z) = x 2y + 5z on the surface $x^2 + y^2 + z^2 = 25$.
- (12 pts) 8. If $f(x,y) = \frac{1}{1-x-y}$
 - a) find the linear approximation, $\ell(x, y)$ near (0, 0),
 - b) find the quadratic approximation, q(x, y) near (0, 0),
 - c) estimate the error $|f(x,y) \ell(x,y)|$ if $|x| < 10^{-2}$ and $|y| < 10^{-2}$. HINT: $|x| < 10^{-2}$ and $|y| < 10^{-2}$ implies $1 x y \ge .98$.

Do EITHER 9) or 10) or 11). INDICATE YOUR CHOICE:

(11 pts) 9. If f(x, y, z) has a maximum at P, a point on the surface g(x, y, z) = 10, show $\nabla f(p) = \lambda \nabla g(p)$.

- (11 pts) 10. If a particle moves 10^{-2} units along the helm $x=3\cos t,\ y=\sin t,\ z=4t$ from $\left(\frac{3\sqrt{2}}{2},\frac{3\sqrt{2}}{2},\pi\right)$ towards $(0,3,2\pi),\ t$ goes from $\frac{\pi}{4}$ towards $\frac{\pi}{2}$, and $f(x,y,z)=x^2+y^2+z$ estimate ΔF .
- (11 pts) 11. a) If $f, f_x, f_y, f_{xx}, f f_{xy}, f_{yy}$ are continuous state the Taylor Formula of order 2 with (x_0, y_0) as a starting point. I.e. $f(x, y) = f(x_0, y_0) + ?$
 - b) Use the formula of part a) to show $|f(x,y) \ell(x,y)| \leq \frac{M}{2}[|x-x_0| + |y-y_0|]^2$ where $M = \text{maximum of } |f_{xx}|, |f_{xy}|, |f_{yy}|.$

- (15 pts) 1) Set up integrals but do not evaluate them for the mass of the solid between $z=\sqrt{x^2+y^2}$ and $x^2+y^2+z^2=9$ if the density $\delta=x$ in
 - A) Rectangular coordinates,
 - B) Spherical coordinates,
 - C) Cylindrical coordinates.

(14 pts) 2) Change the integral

$$\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} dy dx$$

into polar coordinates and evaluate it.

(14 pts) 3) Evaluate $\int_C f ds$ if $f = xy^2$ and C is the line connecting (0,0,0) to (1,2,-1).

(14 pts) 4) Find the mass of the volume above $z = y^2$, below z = 4, and between x = 0 and x = 1 if the density $\delta = x$.

(12 pts) 5) Find the average distance from (0,0,0) to a point (x,y,z) belonging to the set

$$R = \{(x, y, z) | x^2 + y^2 + z^2 \le 4\}.$$

(11 pts) 6) Find the work done by the force $\vec{F} = yi + xj + x^2k$ over the curve $x = \cos t$, $y = \sin t$, z = t, $0 \le t \le 2\pi$.

(6 pts) 7) Let $R = \{(u, v) | 1 \le u \le 1.01, 1 \le v \le 1.01\}$ be a set in the u - v plane. Let $x = uv^2$ $y = u^2v + uv$ be a map from the u - v plane into the x - y plane. If \overline{R} is the image of R under the given map what is the approximate area of \overline{R} .

(14 pts) 8) Let R be the region in the x-y plane bounded by $y=0,\ y=x,$ and x+2y=2 use the following steps to evaluate

$$\int_{R} (x+2y)e^{y-x}dA \text{ using}$$

the substitution u = x + 2y v = x - y.

- A) Sketch R and its image in the u-v plane.
- B) Find $\frac{\partial(x,y)}{\partial(u,v)}$.
- C) Evaluate the integral.