MATHEMATICS 182 TEST IIIA

1) $\mathbf{F} = (y\sin z)\mathbf{i} + (x\sin z)\mathbf{j} + (xy\cos z)\mathbf{k}.$

2) Find the mass of a thin wire lying along the curve $\mathbf{r}(t) = \sqrt{2} t \mathbf{i} + \sqrt{2} t \mathbf{j} + (4 - t^2) \mathbf{k}$, $0 \le t \le 1$, if the density is $\delta = 3t$.

3) Find the mass of a thin plate covering the region outside the circle r=3 and inside the circle $r=6\sin\theta$ if the plate's density function is $\delta(x,y)=1/r$.

4) Set up but do not evaluate integrals for the following:

a) The solid bounded below by the hemisphere $\rho = 1, z \geq 0$, and above by the cardioid of revolution $\rho = 1 + \cos \phi$.

b) Find the volume of the region bounded above by the paraboloid $z = 9 - x^2 - y^2$, below by the xy-plane, and lying outside the cylinder $x^2 + y^2 = 1$.

c) Find the moment of inertia of a right circular cone of base radius a and height h about its axis. (Hint: Place the cone with its vertex at the origin and its axis along the z-axis.)

5) Find the circulation and flux of the fields $F = x\mathbf{i} + y\mathbf{j}$ $x\mathbf{j}$ around and across the following curve: The ellipse $\mathbf{r}(t) = (\cos t)\mathbf{i} + (4\sin t)\mathbf{j}, \ 0 \le t \le 2\pi$.

6) F(x, y, z) = xyz over the cube in the first octant bounded by the coordinate planes and the planes x = 2, y = 2, and z = 2.

7) a) Solve the system u = 2x - 3y, v = -x + y for x and y in terms of u and v. Then find the value of the Jacobian $\partial(x,y)/\partial(u,v)$.

b) Find the image under the transformation u = 2x - 3y, v = -x + y of the parallelogram R in the xy-plane with boundaries x = -3, x = 0, y = x, and y = x + 1. Sketch the transformed region in the uv-plane.

c) Use the transformation and parallelogram R in a) to evaluate the integral $\iint\limits_R (2x-y) dx dy.$

MATHEMATICS 182 TEST 3

(10 pts) 1) Find I_z , the moment of inertia with respect to the z-axis of the volume between $z=x^2+y^2$ and z=1 if the density $\delta=z$.

(10 pts) 2) Change the integral

$$\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 6x dy dx$$

to polar coordinates and evaluate it.

(10 pts) 3) Find the area outside r = 1 and inside $r = 1 + \cos \theta$.

- (10 pts) 4) Evaluate the line integral of f(x, y, z) = x + y + z along the line connecting (1, 1, 1) to (2, 3, -2).
- (10 pts) 5) Find the work done by the force $\vec{F} = x^2i + z^2k$ over the curve

$$x = \cos t$$
 $y = \sin t$ $z = t$, $0 \le t \le \pi$.

(10 pts) 6) Find the volume above $z = y^2$ and below z = 4 between x = 0 and x = 1.

(30 pts) 7) Set up but do not evaluate integrals for the following.

- a) The mass of the tetrahedron with corners (0,0,0), (1,0,0), (0,1,0) and (0,0,1) if the density $\delta = 2y$,
- b) The center of mass of the plate bounded by the parabola $y^2 = 4x$ and the line x + y = 4 if the density $\delta = 1$,
- c) The volume between the spheres $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 + z^2 = 1$ above the cone $\varphi = \pi/4$.

(10 pts) 8) a) Solve the system

$$u = x + 2y$$
 and $v = x - y$ for

 \mathcal{Z} and \mathcal{Z} . Find the Jacobian J(u, v).

- b) Sketch the region in the x-y plane bounded by $y=0,\ y=x,$ and x+2y=2. What is the image in the u-v plane?
- c) Change $\int_{0}^{2/3} \int_{y}^{2-2y} (x+2y)e^{y-x}dxdy$ into an integral over a domain in the u-v plane. Do not evaluate the integral.