MATHEMATICS 182 FINAL EXAM

(20 pts) 1) Let $f(x, y, z) = x^2 \cos y + z^2$.

- a) Find ∇f at (1,0,1).
- b) Find the directional derivative of f in the direction of $\vec{V}=2k$.
- c) In what direction does f change most rapidly?

(20 pts) 2) Given the points $P_1=(1,2,1),\ P_2(2,2,3),\ {
m and}\ P_3=(2,-1,1)$ find

- a) the equations of a line through P_1 and P_2 ,
- b) the equation of a plane through P_1, P_2 , and P_3 .

(15 pts) 3) If
$$w = x^2 + y^2$$
, $x = r - s$, and $y = r + s$ find $\frac{\partial^2 w}{\partial r^2} + \frac{\partial^2 w}{\partial s^2}$

- (25 pts) 4) a) Show that the vector field $\vec{F} = (z + \cos y)i + [-x\sin y)j + (x+z^2)k$ is conservative.
 - b) Find f such that $\vec{F} = \nabla f$.
 - c) What is $\int_C \vec{F} \circ dR$ if C is the curve $x = t^3$, $y = \pi t^2$, z = t, $0 \le t \le 1$.

(20 pts) 5) a) Find parametric equations for the cone $3(x^2+y^2)=z^2$, $0\leq z\leq \sqrt{3}$

b) Find the surface area of the cone.

- (20 pts) 6) a) Use the divergence theorem to evaluate $\int_S (\vec{V} \circ \vec{N}) d\sigma$ where $\vec{V} = 3xi yj zk$ and S is the sphere $x^2 + y^2 + z^2 = 9$.
 - b) Use Stoke's Theorem to evaluate $\int_S (\nabla \times \vec{V}) \circ \vec{N} d\sigma$ if $\vec{V} = x^2 y^2 i$ and S is the upper half of $x^2 + y^2 + z^2 = 9$.
- (20 pts) 7) Find the mass of the paraboloid $z = 1 x^2 y^2$, $z \ge 0$, if the density $\int = x^2$.
- (25 pts) 8) If $x = \cos t$, $y = \sin t$, and z = 4t find
 - a) the unit tangent vector as a function of t,
 - b) $\frac{ds}{dt}$ as a function of t,
 - c) the curvature $\kappa = \left| \frac{d\vec{T}}{ds} \right|$ as a function of t.
- (20 pts) 9) a) Find all critical points of $f(x,y) = 9x^3 + y^3/3 4xy$
 - b) Decide which of the critical points are maxima, minima, at saddle points.
- (15 pts) 10) a) If a twice differentiable vector field $\vec{V} = v, i + v_2 j + v_3 k$ is the gradient of a scalar function $f, \ \vec{V} = \nabla f, \text{ show } \nabla \times \vec{V} = 0.$
 - b) If $\int_C \vec{V} \cdot \vec{dR}$ depends on the endpoints only and if \vec{V} is twice differentiable show $\vec{V} = \nabla f$ for some scalar function f.