MATHEMATICS 182 FINAL EXAM

- 1) Given the points $P_1 = (1, 1, 1)$, $P_2 = (2, 3, 1)$, and $P_3 = (2, -1, 2)$ find
 - a) The equation of the line through P_1 and P_2 ,
 - b) The equation of the plane through P_1, P_2 , and P_3 .
 - c) The intersection point of the line of part a) with the y-z plane.
- 2) a) If z is defined as a a function of x and y by the equation $xz + yz^3 2xy = 0$ find $\frac{\partial z}{\partial x}$ at (1, 1, 1).
 - b) If $z = \ln(w)$ and $w = (\sqrt{v+3})(\tan^{-1}u)$ find $\frac{\partial z}{\partial v}$ and the $\frac{\partial z}{\partial r}$ when u = 1 and v = -2.
- 3) a) Show that the vector field $\vec{F} = (z^2 + \cos y)i + (-x\sin y)j + \left(2xz + \cos\frac{\pi z}{2}\right)k$ is conservative.
 - b) Find f such that $\vec{F} = \nabla f$.
 - c) What is $\int_C \vec{F} \cdot dR$ if C is the curve $x = \cos t$ $y = \frac{t}{\pi}$ $z = \sin t, \ 0 \le t \le 4\pi$?
- 4) If a curve is parametrized by $x = \cos t$ $y = \sin t$ $z = 4t, -\infty < t < \infty$, find
 - a) The unit tangent vector, \vec{T} , as a function of t,
 - b) $\frac{ds}{dt}$ as a function of t,
 - c) $K = \left| \frac{\overrightarrow{dT}}{ds} \right|$ as a function of t.
 - d) \vec{N} as a function of t.
 - e) \vec{B} as a function of t.
- 5) If $f(x, y, z) = x^2y + xye^z$ find
 - a) ∇f at (1, 2, 0),
 - b) the direction in which f changes most rapidly at (1, 2, 0),
 - c) the tangent plane and normal line to $x^2y + xye^z = 4$ at (1, 2, 0).

- 6) a) Find all critical points of $9x^3 + \frac{y^3}{3} 4xy$.
 - b) Which of the critical points are maxima, minima, saddle points.
- 7) If $f(x, y) = y \sin x$ find
 - a) the values of f_{xx} , f_{xy} , f_{yy} at (0,0)
 - b) the quadratic approximation of f.
- 8) a) Parametrize the part of the spherical surface $x^2 + y^2 + z^2 = 9$ over the cone $z = \sqrt{x^2 + y^2}$.
 - b) What is the surface area of the surface of a)
- 9) Set up but do not evaluate integrals for the following:
 - a) The area inside the cordiod $r = 2(1 + \sin \theta)$ and outside the circle r = 1,
 - b) The mass of the tetrahedron with corners (0,0,0), (1,0,0), (0,2,0), (0,0,2) if the density $\delta = xy$.
 - c) The volume between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 1$ inside the sphere $x^2 + y^2 + z^2 = 9$.
- 10) a) Use Stoke's theorem to evaluate $\int_{S} (\nabla \times \vec{F}) \cdot \vec{N} d\sigma$ if $\vec{F} = 2zi + 3xj + 5yk$ and S is the part of the paraboloid $z = 4 x^2 y^2$ above the x y plane.
 - b) Use Green's Theorem to find the area inside the ellipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1.$$