1) Subtract these polynomials:
$$(3a^3-4a+2)-(7a^3-a^2+2a-8)$$

- $A. -4a^{3} a^{2} 6a + 10$ $B. -4a^{3} + a^{2} + 2a + 10$ $C. -4a^{3} - a^{2} - 2a - 6$ $D. -4a^{3} + a^{2} - 6a + 10$
- *E.* None of the above.

2) What is the domain of the function *f* written below?

$$f(x) = \sqrt{10 - 12x}$$

$$A. \quad \left(-\infty, \frac{5}{6}\right]$$
$$B. \quad \left[\frac{6}{5}, \infty\right)$$
$$C. \quad \left[\frac{5}{6}, \infty\right)$$
$$D. \quad (-\infty, \infty)$$
$$E. \quad \left(-\infty, -\frac{5}{6}\right]$$

3) If
$$g(x) = \frac{2x-3}{x+5}$$
, find and simplify $g(2a+3)$.

A.
$$\frac{2a+3}{a+8}$$

B.
$$\frac{4a+3}{2a+8}$$

C.
$$\frac{4a+9}{2a+8}$$

D.
$$\frac{4a}{2a+8}$$

E.
$$\frac{2a}{a+8}$$

4) Which statement(s) is(are) true?

I
$$(3x+1)(x^2 - x + 3) = 3x^3 - 2x^2 + 8x + 3$$

II $(4a+9)^2 = 16a^2 + 81$
III $(10-4r)(10+4r) = 100-16r^2$

- A. I and III only
- *B*. I and II only
- *C*. III only
- D. II and III only
- *E*. I, II, and III
- 5) Find a polynomial expression to represent the area of the gray shaded region below.

- $A. \quad Area = 9x^2 3x 6$
- *B.* $Area = 12x^2 + 48x + 24$
- *C. Area* = $9x^2 + 14x + 4$
- *D. Area* = $12x^2 + 14x + 4$
- *E.* $Area = 12x^2 + 48x + 4$

$$\frac{4n+2}{3} + \frac{3}{4} = \frac{n-2}{2} + \frac{7}{12}$$

A.
$$n = -\frac{5}{11}$$

B.
$$n = -\frac{8}{5}$$

C.
$$n = -\frac{11}{5}$$

D.
$$n = -\frac{22}{5}$$

E.
$$n = -\frac{5}{22}$$

7) Solve the following equation. $\frac{3}{2x-2} + \frac{1}{2} = \frac{2}{x-1}$ Which statement describes the solution?

- A. The solution is zero.
- B. The solution is less than -2.
- C. The solution is at least -2, but less than 1.
- D. The solution is at least 1, but less than $2\frac{1}{2}$.
- *E*. The solution is greater than $2\frac{1}{2}$.

- 8) Jennifer deposited \$800 in an account that pays a rate of $3\frac{1}{2}$ % annually. She then deposited some other money in another account that pays a rate of 4% annually. If she earned a total of \$29.65 interest in one year from both accounts, which equation could be used to find the amount of money Jennifer invested in the second (4% interest rate) account? Let *m* represent the amount invested in the second (4% interest) account.
 - A. 0.035(800 m) + 0.04m = 29.65
 - $B. \quad 0.35(800) + 0.4m = 29.65$
 - $C. \quad 0.035m + 0.4(800) = 29.65$
 - $D. \quad 0.35(85.85) + 0.4m = 800$
 - *E*. 0.035(800) + 0.04m = 29.65
- 9) How much **pure** alcohol should be added to 7 Liters of 10% alcohol to get a solution that is 30% alcohol?
 - A.1 LiterB. $1\frac{1}{2}$ LitersC. $2\frac{1}{2}$ LitersD. $3\frac{1}{2}$ LitersE.2 Liters
- 10) Solve the equation $5x^2 + 7x + 2 = 0$. Which statement describes one or both of the solutions?
 - A. One solution is less than -5.
 - *B.* One solution is greater than 5.
 - *C*. One solution is between 0 and 5.
 - D. Both solutions are between -2 and 0.
 - *E*. Both solutions are between -5 and -2.

- 11) Andrew and Kent both work for Joe. Andrew can complete a typical job 2 hours faster than Kent can complete a typical job. If both work together, they complete a typical job in 5 hours. How long would it take **Andrew alone** to complete a typical job? Round Andrew's time to the nearest tenth of an hour. Hint: You will have to use the quadratic formula.
 - *A.* 9.1 hours
 - *B.* 8.5 hours
 - *C*. 11.1 hours
 - D. 10.8 hours
 - *E.* 12.8 hours

12) Katie leaves her apartment and rides her bike south at a rate of 12 mph. Her roommate, Megan, starts **half an hour later** from the apartment and jogs north at a rate of 6 mph. How long has Katie been riding her bike when the girls are 45 miles apart?

	Distance	Rate	Time
Katie			
Megan			

 $A 2\frac{1}{2} hr. \\ B 5\frac{1}{2} hr. \\ C 3 hr. \\ D 4 hr. \\ E 2\frac{2}{3} hr. \end{cases}$

- An algebra student has an **average** of 70% on five exams. Her first 4 exams were 75%, 79%, 13) 64%, and 71%. Which statement describes her percent score for the fifth exam?
 - Her 5th exam score was greater than 85% Α.
 - В.
 - Her 5^{th} exam score was between 70% and 76%. Her 5^{th} exam score was between 80% and 85%. С.
 - D.
 - Her 5th exam score was less than 70%. Her 5th exam score was between 76% and 80%. Е.

Solve the equation below. Select one of the solutions. 14)

$$6x^2 - 11x - 10 = 0$$

 $A. \quad x = -\frac{3}{2}$ $B. \qquad x = -\frac{2}{3}$ $C. \qquad x = \frac{2}{5}$ $D. \qquad x = -\frac{5}{2}$ $E. \qquad x = \frac{5}{3}$

15) Solve the equation below. Write the solution set.

x(2x-1) = 21

A.
$$\left\{-\frac{7}{2}, 3\right\}$$

B. $\left\{-7, \frac{3}{2}\right\}$
C. $\left\{-\frac{3}{2}, 7\right\}$
D. $\left\{-3, \frac{7}{2}\right\}$

Ε. None of the above. 16) At a point *P*, 30 meters from the base of a tower, the distance to the top of the tower is 2 meters more than twice the height of the tower. If *x* represents the height of the tower, which **simplified** equation could be used to solve for x?

- A. $3x^{2} + 8x 896 = 0$ B. $3x^{2} + 4x - 896 = 0$ C. $3x^{2} + 8x - 904 = 0$ D. $3x^{2} - 4x - 904 = 0$
- *E*. $3x^2 8x + 904 = 0$

17) Find the equation in slope-intercept form for the line passing through the points (3, -2) and (5, 1).

A.
$$y = \frac{3}{2}x - \frac{5}{2}$$

B. $y = -\frac{1}{2}x - \frac{1}{2}$
C. $y = \frac{2}{3}x - 4$
D. $y = \frac{3}{2}x - \frac{13}{2}$
E. $y = -\frac{3}{2}x + \frac{5}{2}$