1) Which choice is a graph of the line with equation, $2 x-3 y=12$?

2) Find this limit, if possible.

$$
\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16}
$$

A. $\quad \infty$
B. $\frac{1}{8}$
C. 0
D. 8
E. The limit does not exist.
3) Find this limit: $\quad \lim _{x \rightarrow 2}\left(\frac{3 x^{2}-8 x+4}{x^{2}-4}\right)$
A. 0
B. ∞
C. 3
D. 1
E. -1
4) Find this limit, if possible. $\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}-7 x^{4}}{9 x^{4}+5 x^{2}-6}\right)$
A. $\frac{7}{9}$
B. $-\frac{7}{9}$
C. $\frac{2}{9}$
D. ∞
E. Limit does not exist.
5) Find the average rate of change of the function $f(x)=3 x^{2}-2 x-1$ on the interval $[-2,1]$.
A. -15
B. 15
C. 5
D. -5
E. -14
6) Find the equation in slope-intercept form of the line tangent to the graph of $f(x)=2 x^{2}-\sqrt{x}+2$ at the point (1, 3)
A. $y=\frac{11}{2} x-\frac{5}{2}$
B. $y=\frac{7}{2} x-\frac{1}{2}$
C. $y=\frac{11}{2} x-\frac{31}{2}$
D. $y=\frac{7}{2} x$
E. $y=\frac{7}{2} x+3$
7) Find the derivative of this function. $f(x)=5 x^{2}+12 \sqrt[3]{x}-\frac{3}{x^{4}}$
A. $f^{\prime}(x)=10 x-\frac{4}{x^{5 / 3}}+\frac{12}{x^{5}}$
B. $f^{\prime}(x)=10 x-\frac{4}{x^{5 / 3}}-\frac{3}{4 x^{3}}$
C. $f^{\prime}(x)=10 x+\frac{4}{x^{2 / 3}}+\frac{12}{x^{5}}$
D. $f^{\prime}(x)=10 x+\frac{4}{x^{2 / 3}}-\frac{3}{4 x^{3}}$
E. $f^{\prime}(x)=10 x+\frac{4}{x^{2 / 3}}-\frac{12}{x^{5}}$
8) The profit from the sale of x hamburgers is given by the profit function below.

$$
P(x)=2.44 x-\frac{1}{20000} x^{2}-5000 \text { for } 0 \leq x \leq 50000
$$

Approximate the profit (or loss) from the sale of the $20001^{\text {st }}$ hamburger by finding the marginal profit when x is 20000 .
A. Profit: $\$ 1.44$ / hamburger
B. Profit: $\$ 2.38 /$ hamburger
C. Profit: $\$ 0.94 /$ hamburger
D. Profit: $\$ 0.44 /$ hamburger
E. Loss: - $\$ 0.94 /$ hamburger
9) Find a point on the graph of $f(x)=x^{3}+3 x^{2}$ where the tangent line to the point is horizontal. (Think: What is the slope of a horizontal line?)
A. $(1,4)$
B. $(-2,4)$
C. $(0,1)$
D. $(2,20)$
E. $(-2,0)$
10) At time 0 , a diver jumps from a diving board that is 32 feet high. Because the diver's initial velocity is 16 feet per second, his height above the water is given by the function, $h(t)=-16 t^{2}+16 t+32$. In 2 seconds, the diver hits the water. What is his velocity at the time he hits the water?
A. -32 ft ./sec.
B. $-36 \mathrm{ft} . / \mathrm{sec}$.
C. $-42 \mathrm{ft} . / \mathrm{sec}$.
D. $-48 \mathrm{ft} . / \mathrm{sec}$.
E. $-54 \mathrm{ft} . / \mathrm{sec}$.
11) Find the derivative of the function, $y=f(x)=\left(2 x^{3}-x+1\right)(3 x-5)$.

$$
\begin{array}{ll}
\text { A. } & y^{\prime}=24 x^{3}-30 x^{2}-6 x+8 \\
\text { B. } & y^{\prime}=24 x^{3}-30 x^{2}-3 x+3 \\
\text { C. } & y^{\prime}=-12 x^{3}-30 x^{2}-6 x+8 \\
\text { D. } & y^{\prime}=6 x^{3}-12 x^{2}-6 x+8 \\
\text { E. } & y^{\prime}=-12 x^{3}+30 x^{2}-2
\end{array}
$$

12) If $g(x)=\frac{1-4 x}{2 x+3}$, find the value of the derivative at the point $\left(1,-\frac{3}{5}\right)$.
A. $-\frac{26}{25}$
B. $\frac{14}{25}$
C. $\frac{26}{25}$
D. $-\frac{14}{25}$
E. $-\frac{18}{25}$
13) Find the slope of the tangent line to $f(x)=\left(x^{3}-4\right)\left(x^{2}-x+2\right)$ at the point $(2,16)$.
A. $m=-60$
B. $m=60$
C. $m=36$
D. $m=-36$
E. $m=48$
14) Find the value of the derivative of $y=2 x^{2}\left(2 x+\sqrt{x}-\frac{3}{x}\right)$ at the point $(1,0)$.
A. 22
B. 0
C. 11
D. -2
E. -6
15) A company that manufactures bicycles has determined that a new employee can assemble $N(d)$ bicycles per day after d days of on-the-job training, where $N(d)=\frac{100 d^{2}}{3 d^{2}+10}$. Find and interpret $N^{\prime}(5)$.
A. The new employee is assembling 11.7 additional bicycles per day after 5 days of training.
B. The new employee is assembling 2.8 additional bicycles per day after 5 days of training.
C. The new employee is assembling 23.5 additional bicycles per day after 5 days of training.
D. The new employee is assembling 10.7 additional bicycles per day after 5 days of training.
E. The new employee is assembling 1.4 additional bicycles per day after 5 days of training.
