1) Find this limit, if possible.

$$
\lim _{x \rightarrow-2} \frac{2 x^{2}-x-10}{x^{2}-4}
$$

A. $-\frac{9}{4}$
B. $\frac{9}{4}$
C. 0
D. $\frac{1}{4}$
E. Limit does not exist.
2) Find this limit, if possible.

$$
\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x+9}{2 x^{3}-3 x+1}
$$

A. ∞
B. $\frac{5}{2}$
C. 1
D. 0
E. Limit does not exist.
3) Find the average rate of change for the following function on the given interval.

$$
f(x)=-x^{3}+5 x^{2}+1 \text { from } x=-2 \text { to } x=3
$$

A. 30
B. 6
C. -8
D. -10
E. -2
4) Find the x-coordinate only of any point(s) at which the graph of the function below has a horizontal tangent line.

$$
f(x)=\frac{2}{3} x^{3}+x^{2}-12 x-6
$$

$$
\begin{array}{ll}
\text { A. } & x=-3,0,2 \\
\text { B. } & x=12 \\
\text { C. } & x=-3,2 \\
\text { D. } & x=-12 \\
\text { E. } & x=-2,3
\end{array}
$$

5) If $f(x)=\frac{1-4 x}{2 x+3}$, find the value of the derivative at the point $\left(1,-\frac{3}{5}\right)$.
A. $-\frac{26}{25}$
B. $\frac{14}{25}$
C. $\frac{26}{25}$
D. $-\frac{18}{25}$
E. $-\frac{14}{25}$
6) The revenue, in dollars, from selling x compact disk players is $R(x)=\frac{3000}{x}+100 x$. Use a marginal function to estimate the additional revenue of the $11^{\text {th }}$ compact disk player after 10 have been sold.
A. $\quad \$ 70.00$
B. $\$ 72.00$
C. $\quad \$ 72.73$
D. $\$ 74.00$
E. $\$ 74.79$
7) Find $D_{x}\left[\frac{(5 x-3)(2 x+7)}{3 x+7}\right]$.

$$
\begin{aligned}
& \text { A. } \frac{-30 x^{2}-57 x+133}{(3 x+7)^{2}} \\
& \text { B. } \frac{30 x^{2}+140 x+266}{(3 x+7)^{2}} \\
& \text { C. } \frac{-30 x^{2}-57 x+133}{(3 x+7)^{2}} \\
& \text { D. } \frac{30 x^{2}+256 x+182}{(3 x+7)^{2}} \\
& \text { E. } \frac{30 x^{2}+140 x+182}{(3 x+7)^{2}}
\end{aligned}
$$

8) The height above the water of a diver is given by the position function below, where h is the height above the water in feet and t is time in seconds. What is the velocity of the diver when he hits the water? Hint: First, you will need to find the time when he hits the water (height is zero feet).

$$
h(t)=-16 t^{2}+16 t+32
$$

A. $\quad-24$ feet per second
B. -16 feet per second
C. -36 feet per second
D. -48 feet per second
E. -60 feet per second
9) Find the derivative of the function below.

$$
f(x)=\left(x^{2}-2 x+1\right)(3 x-2)
$$

A. $\quad 9 x^{2}-16 x+7$
B. $9 x^{2}-4 x-4$
C. $3 x^{3}-8 x^{2}+7 x-2$
D. $6 x-6$
E. $9 x^{2}-10 x+3$
10) Find all value(s) of x where the derivative does not exist. Each hash mark on the x-axis represents one unit.

A. $x=2, x=4$
B. $x=1, x=4$
C. $x=-2, x=1, x=2, x=4$
D. $x=2$
E. $x=1, x=2, x=4$
11) Below is a function f and its derivative, f^{\prime}. Find the equation of the line tangent to the graph of f at the point, $(-2,-2)$.
$f(x)=\frac{5 x}{x^{2}+1} \quad f^{\prime}(x)=\frac{5-5 x^{2}}{\left(x^{2}+1\right)^{2}}$
A. $y=\frac{1}{25} x-\frac{48}{25}$
B. $y=-\frac{3}{5} x+\frac{4}{5}$
C. $y=x+4$
D. $y=-\frac{3}{5} x-\frac{16}{5}$
E. $y=\frac{1}{25} x+\frac{48}{25}$
12) If $y=4 x\left(x^{2}-1\right)^{3}$, then y^{\prime} is equivalent to which choice? Note: You will need to factor your derivative.
A. $4\left(x^{2}-1\right)^{2}\left(7 x^{2}-1\right)$
B. $4\left(x^{2}-1\right)^{2}\left(x^{2}+6 x-1\right)$
C. $4\left(x^{2}-1\right)^{2}\left(x^{2}+3 x-1\right)$
D. $12 x\left(x^{2}-1\right)^{2}$
E. $24 x^{2}\left(x^{2}-1\right)^{2}$
13) The daily cost function for production of a particular type of calculator is $C(x)=0.0001 x^{3}-0.08 x^{2}+40 x+5000$ dollars, where x is the number of calculators produced. What is the instantaneous rate of change in cost at the time the $59^{\text {th }}$ calculator is produced?
A. $\$ 31.12 /$ calculator
B. $\$ 31.48 /$ calculator
C. $\$ 31.54$ / calculator
D. $\$ 31.72$ / calculator
E. $\$ 31.60 /$ calculator
14) Find the derivative of $g(x)=\left(2 x^{2}-5 x+1\right)^{3}$.
A. $\quad g^{\prime}(x)=3(4 x-5)^{2}$
B. $g^{\prime}(x)=3(4 x-5)\left(2 x^{2}-5 x+1\right)^{2}$
C. $g^{\prime}(x)=12 x\left(2 x^{2}-5 x+1\right)^{2}$
D. $g^{\prime}(x)=12(4 x-5)^{2}$
E. $g^{\prime}(x)=(12 x-5)\left(2 x^{2}-5 x+1\right)^{2}$
15) If $y=\frac{2}{(5 x+1)^{3}}$, find $\frac{d y}{d x}$.
A. $\frac{-6}{(5 x+1)^{4}}$
B. $\frac{-30}{(5 x+1)^{2}}$
C. $\frac{-10}{3(5 x+1)^{4 / 3}}$
D. $\frac{-30}{(5 x+1)^{4}}$
E. $\frac{30}{(5 x+1)^{4}}$

