1) If $f(x)=5 x^{2}-3$ and $g(x)=2 x+3$, find $g[f(x)]$.
A. $10 x^{2}$
B. $20 x^{2}+60 x+42$
C. $10 x^{2}-3$
D. $20 x^{2}+42$
E. $10 x^{2}+30 x+21$
2) Find $f^{\prime}(x)$ or the derivative of f, if $f(x)=\left(4 x^{4}-7 x^{2}+2\right)^{3}$. (Write answer completely factored.)
A. $f^{\prime}(x)=6 x\left(8 x^{2}-7\right)\left(4 x^{4}-7 x^{2}+2\right)^{2}$
B. $f^{\prime}(x)=3\left(16 x^{3}-14 x\right)^{2}$
C. $f^{\prime}(x)=3 x\left(8 x^{2}-7\right)\left(4 x^{4}-7 x^{2}+2\right)^{2}$
D. $f^{\prime}(x)=3\left(4 x^{4}-7 x^{2}+2\right)^{2}$
E. $f^{\prime}(x)=6 x\left(8 x^{2}-7\right)\left(4 x^{4}-7 x^{2}+2\right)$
3) Find the derivative of the function below. (Completely factor the derivative.)

$$
\begin{array}{ll}
y=-4 x\left(2 x^{2}-3\right)^{5} & \\
& \text { A. } \\
\text { B. } & -4\left(2 x^{2}-3\right)^{4}\left(20 x^{2}+3\right)^{4}\left(1-80 x^{2}\right) \\
\text { C. } & -4\left(2 x^{2}-3\right)\left(22 x^{2}-3\right) \\
\text { D. } & -4\left(2 x^{2}-3\right)^{4}\left(22 x^{2}-3\right) \\
\text { E. } & 15360 x^{2}\left(2 x^{2}+3\right)^{4}
\end{array}
$$

4) If $f(x)=e^{-x}(\ln x)$, find $f^{\prime}(x)$ when $x=1$.
A. 0
B. $f^{\prime}(1)$ does not exist.
C. $\frac{2}{e}$
D. e
E. $\frac{1}{e}$
5) Solve the equation below. Then, select the correct choice that describes the solution.

$$
32^{2 x-3}=16^{x+1}
$$

A. The solution is greater than 3 .
B. The solution is less than 0 .
C. The solution is greater than 0 , but less than 1 .
D. The soltuion is greater than 1 , but less than 2 .
E. The solution is greater than 2 , but less than 3 .
6) Which statement(s) in the box below is(are) true?

$$
\begin{array}{ll}
\text { I } & \log _{3} 9=2 \text { is equivalent to } 3^{2}=9 . \\
\text { II } & \ln 21 \text { is approximately } 1.322 . \\
\text { III } & \log _{b} 50=\log _{b} 5+\log _{b} 10 .
\end{array}
$$

A. I and III only.
B. III only.
C. II and III only.
D. I and II only.
E. None are true.
7) Julie deposits $\$ 1500$ in an account that earns a 3% interest rate compounded quarterly. If she leaves the money to grow, how much interest has the account earned in 8 years? Round to the nearest dollar. (See the formulas on the cover sheet.)
A. $\quad \$ 92$
B. $\$ 405$
C. $\$ 46$
D. $\$ 140$
E. None of the above.
8) If $\log _{2} 32=a, \log _{2} 3=b$, and $\log _{2} 7=c$, find an expression to represent $\log _{2}\left(\frac{21}{32}\right)$.
A. $b c-a$
B. $a-b-c$
C. $\frac{b c}{a}$
D. $b+c-a$
E. $-a b c$
9) Approximate the solution of this equation (rounded to 3 decimal places).

$$
2^{x}=11
$$

A. 0.289
B. 3.317
C. 3.091
D. 1.662
E. 3.459
10) Find the derivative of the function below. Factor your answer.

$$
y=\ln \left(x^{2}+24 x\right)
$$

A. $y^{\prime}=\frac{x+12}{x(x+24)}$
B. $y^{\prime}=\frac{2(x+12)}{x(x+24)}$
C. $y^{\prime}=\frac{x+12}{x+24}$
D. $y^{\prime}=\frac{1}{x^{2}}+\frac{1}{24 x}$
E. $y^{\prime}=\frac{1}{x(x+24)}$
11) Find the derivative of function f given below.

$$
f(x)=\frac{e^{x}}{3 \ln x}
$$

A. $f^{\prime}(x)=\frac{e^{x}\left(\ln x^{3}-\frac{1}{x^{3}}\right)}{9(\ln x)^{2}}$
B. $f^{\prime}(x)=\frac{e^{x}\left(\frac{1}{x}-1\right)}{3(\ln x)^{2}}$
C. $f^{\prime}(x)=\frac{e^{x}(\ln x-1)}{3(\ln x)^{2}}$
D. $f^{\prime}(x)=\frac{x e^{x}}{3}$
E. $f^{\prime}(x)=\frac{e^{x}\left(\ln x-\frac{1}{x}\right)}{3(\ln x)^{2}}$
12) Find the value of x where the tangent to the graph of $y=x e^{-x}$ is horizontal.
A. 0
B. $\frac{1}{e}$
C. $-\frac{1}{e}$
D. 1
E. -1
13) Given: function $y=x e^{x}$, with first derivative $\frac{d y}{d x}=x e^{x}+e^{x}$ and second derivative $\frac{d^{2} y}{d x^{2}}=x e^{x}+2 e^{x}$.

Which of the following statements is(are) true?

I The function is increasing on the interval $(-1, \infty)$.
II The function is concave upward on the interval $(-2, \infty)$.
III The function is decreasing on the interval $(-\infty, 2)$.
IV There is no interval where the function is concave downward.
A. II and III only
B. I and II only
C. I only
D. I, III, and IV only
E. I and IV only
14) Which statement below is true about the graph of the function $f(x)=\frac{x^{2}+4}{2+7 x-4 x^{2}}$?
A. The line $x=1$ is a vertical asymptote.
B. The line $y=\frac{1}{4}$ is a horizontal asymptote.
C. The line $x=-\frac{1}{4}$ is a vertical asymptote.
D. The graph has no vertical or horizontal asymptotes.
E. The line $y=2$ is a horizontal asymptote.
15) Find the second derivative of $y=e^{x}(x-1)^{2}$.
A. $e^{x}(x-1)^{2}$
B. $e^{x}\left(x^{2}+2 x-1\right)$
C. $e^{x}\left(x^{2}-2 x-1\right)$
D. $2 e^{x}(x-1)$
E. $2 e^{x}$

