1) If
$$f(x) = 5x^2 - 3$$
 and $g(x) = 2x + 3$, find $g[f(x)]$.

- A. $10x^2$ B. $20x^2 + 60x + 42$ C. $10x^2 - 3$ D. $20x^2 + 42$ E. $10x^2 + 30x + 21$
- 2) Find f'(x) or the derivative of *f*, if $f(x) = (4x^4 7x^2 + 2)^3$. (Write answer completely factored.)
 - A. $f'(x) = 6x(8x^2 7)(4x^4 7x^2 + 2)^2$ B. $f'(x) = 3(16x^3 - 14x)^2$ C. $f'(x) = 3x(8x^2 - 7)(4x^4 - 7x^2 + 2)^2$ D. $f'(x) = 3(4x^4 - 7x^2 + 2)^2$ E. $f'(x) = 6x(8x^2 - 7)(4x^4 - 7x^2 + 2)$
- 3) Find the derivative of the function below. (Completely factor the derivative.)

$$y = -4x(2x^2 - 3)^5$$

A. $-4(2x^2-3)^4(20x^2+2x-3)$ B. $(2x^2-3)^4(1-80x^2)$ C. $-4(2x^2-3)(22x^2-3)$ D. $-4(2x^2-3)^4(22x^2-3)$ E. $15360x^2(2x^2+3)^4$ 4) If $f(x) = e^{-x}(\ln x)$, find f'(x) when x = 1.

- A. 0 B. f'(1) does not exist. C. $\frac{2}{e}$ D. eE. $\frac{1}{e}$
- 5) Solve the equation below. Then, select the correct choice that describes the solution.

 $32^{2x-3} = 16^{x+1}$

- A. The solution is greater than 3.
- *B*. The solution is less than 0.
- *C*. The solution is greater than 0, but less than 1.
- *D*. The soltuion is greater than 1, but less than 2.
- *E*. The solution is greater than 2, but less than 3.
- 6) Which statement(s) in the box below is(are) true?
 - I $\log_3 9 = 2$ is equivalent to $3^2 = 9$.
 - II ln 21 is approximately 1.322.
 - III $\log_b 50 = \log_b 5 + \log_b 10.$

- A. I and III only.
- B. III only.
- *C*. II and III only.
- *D*. I and II only.
- *E.* None are true.

- MA 15910
- 7) Julie deposits \$1500 in an account that earns a 3% interest rate compounded quarterly. If she leaves the money to grow, how much **interest** has the account earned in 8 years? Round to the nearest dollar. (See the formulas on the cover sheet.)

А.	\$92

- *B*. \$405
- *C*. \$46
- *D*. \$140
- *E.* None of the above.

8) If
$$\log_2 32 = a$$
, $\log_2 3 = b$, and $\log_2 7 = c$, find an expression to represent $\log_2 \left(\frac{21}{32}\right)$.
A. $bc-a$
B. $a-b-c$
C. $\frac{bc}{a}$
D. $b+c-a$
E. $-abc$

9) Approximate the solution of this equation (rounded to 3 decimal places).

 $2^{x} = 11$

- *A*. 0.289*B*. 3.317
- *C*. 3.091
- D. 1.662
- *E*. 3.459

10) Find the derivative of the function below. Factor your answer.

$$y = \ln(x^2 + 24x)$$

A.
$$y' = \frac{x+12}{x(x+24)}$$

B. $y' = \frac{2(x+12)}{x(x+24)}$
C. $y' = \frac{x+12}{x+24}$
D. $y' = \frac{1}{x^2} + \frac{1}{24x}$
E. $y' = \frac{1}{x(x+24)}$

11) Find the derivative of function f given below.

$$f(x) = \frac{e^x}{3\ln x}$$

A.
$$f'(x) = \frac{e^x \left(\ln x^3 - \frac{1}{x^3} \right)}{9(\ln x)^2}$$

B. $f'(x) = \frac{e^x \left(\frac{1}{x} - 1 \right)}{3(\ln x)^2}$
C. $f'(x) = \frac{e^x (\ln x - 1)}{3(\ln x)^2}$
D. $f'(x) = \frac{xe^x}{3}$
E. $f'(x) = \frac{e^x \left(\ln x - \frac{1}{x} \right)}{3(\ln x)^2}$

12) Find the value of x where the tangent to the graph of $y = xe^{-x}$ is horizontal.

 $A. \quad 0$ $B. \quad \frac{1}{e}$ $C. \quad -\frac{1}{e}$ $D. \quad 1$ $E. \quad -1$

13) Given: function $y = xe^x$, with first derivative $\frac{dy}{dx} = xe^x + e^x$ and second derivative $\frac{d^2y}{dx^2} = xe^x + 2e^x$.

Which of the following statements is(are) true?

- I The function is increasing on the interval $(-1, \infty)$.
- II The function is concave upward on the interval $(-2, \infty)$.
- III The function is decreasing on the interval $(-\infty, 2)$.
- IV There is no interval where the function is concave downward.
 - A. II and III only
 - *B*. I and II only
 - C. I only
 - D. I, III, and IV only
 - *E*. I and IV only

- 14) Which statement below is true about the graph of the function $f(x) = \frac{x^2 + 4}{2 + 7x 4x^2}$?
 - A. The line x = 1 is a vertical asymptote.
 - *B*. The line $y = \frac{1}{4}$ is a horizontal asymptote.
 - C. The line $x = -\frac{1}{4}$ is a vertical asymptote.
 - *D*. The graph has no vertical or horizontal asymptotes.
 - *E*. The line y = 2 is a horizontal asymptote.

15) Find the second derivative of $y = e^x (x-1)^2$.

A.
$$e^{x}(x-1)^{2}$$

B. $e^{x}(x^{2}+2x-1)$
C. $e^{x}(x^{2}-2x-1)$
D. $2e^{x}(x-1)$
E. $2e^{x}$