1) Find the equation of the tangent line (in slope-intercept form) to the curve of the function

$$f(x) = \frac{3x+2}{2x+3}$$
 at the point (-1, -1).

A. y = 5x + 6B. y = 5x + 4C. y = -5x - 4D. y = 5x - 4E. y = -5x - 6

2) Find the derivative of the function f below. Evaluate f'(2).

$$f(x) = (2x^2 - 6x + 5)^4$$

А.	f'(2) = 8
В.	f'(2) = 4
С.	f'(2) = -8
D.	f'(2) = -4
Ε.	f'(x) = -16

3) Find the derivative of function *h* below. Simplify.

$$h(x) = x^2 \sqrt{9x^2 + 4}$$

A.
$$\frac{dh}{dx} = \frac{27x^3 + 8x}{\sqrt{9x^2 + 4}}$$

B. $\frac{dh}{dx} = \frac{36x^3 + x^2 + 4}{2\sqrt{9x^2 + 4}}$
C. $\frac{dh}{dx} = 9x^2 + 4x$
D. $\frac{dh}{dx} = \frac{27x^3 + 8x}{3x + 2}$
E. $\frac{dh}{dx} = \frac{18x^2}{\sqrt{9x^2 + 4}}$

4) Find the <u>interest</u> earned on \$10,000 invested for 4 years at 5% interest compounded quarterly. Round to the nearest cent. (See formulas on the cover sheet.)

А.	\$2155.06
В.	\$2198.90
С.	\$2208.95

- D. \$2184.03
- *E.* \$2214.03

5) Solve the exponential equation below.

$$8^{x+2} = 32^{2x-3}$$

A. $x = 3$

B. $x = \frac{2}{3}$

C. $x = \frac{5}{2}$

D. $x = \frac{3}{2}$

E. $x = \frac{7}{2}$

6) Find the derivative of $y = \ln(x^3)$.

A. y' = 3xB. $y' = 3x^2$ C. $y' = \frac{3}{x^2}$ D. $y' = \frac{3}{x}$ E. $y' = \frac{3}{x^3}$

7) Solve the equation: $\log_3(x-2) + \log_3(x+6) = 2$

A. x = -7, x = 3B. x = 7C. x = -3, x = 7D. x = 3E. No solution.

Exam 3A

- 8) Let $\log_b 2 = R$ and $\log_b 5 = T$. Use the properties of logarithms to represent $\log_b 20$.
 - A. R + 2TB. 2RTC. 2(R+T)D. R+TE. 2R+T

9) Find the derivative of $y = \frac{e^x}{2x^2 + x}$. Factor where possible.

A.
$$\frac{e^{x}(2x^{2}+3x-1)}{x^{2}(2x+1)^{2}}$$

B.
$$\frac{e^{x}(2x^{2}-3x-1)}{x(2x+1)}$$

C.
$$\frac{e^{x}(2x^{2}-3x-1)}{x^{2}(2x+1)^{2}}$$

D.
$$\frac{x^{2}e^{x}(2x^{2}-3x+1)}{(2x+1)^{2}}$$

E.
$$\frac{e^{x}(2x^{2}-3x+1)}{(2x^{2}+x)^{2}}$$

10) The function $f(x) = 4x^4 - 8x^2$ has:

- A. One relative minimum and two relative maximums.
- *B.* One relative minimum and one relative maximum.
- *C.* Two relative maximums and no relative minimums.
- D. Two relative minimums and no relative maximums.
- *E.* Two relative minimums and one relative maximum.

11) For the function $f(x) = \frac{x^2}{x-2}$; find any intercepts, intervals of increasing/decreasing, coordinates of any relative maximum or relative minimum points, values of x for which the graph is concave upward or downward, and any asymptote equations. Use your information to select the correct graph for function f.

12) A certain drug is administered to a patient, with the percent of concentration of the drug in the bloodstream *t* hours later given by $K(t) = \frac{5t}{t^2 + 1}$. After **how many hours** is the concentration of drug in the bloodstream at a **maximum**?

A.
$$\frac{1}{2}$$
 hour
B. $\frac{4}{5}$ hour
C. $1\frac{1}{3}$ hours
D. 2 hours
E. 1 hour

- 13) Below is function g and the first derivative of g. Choose an interval where the function g is concave <u>downward</u>? $g(x) = -x(x-3)^2$ $g'(x) = -3(x^2 - 4x + 3)$
- *A*. (−∞, 2)
- *B*. (1,3)
- C. (2, ∞)
- *D*. (3,∞)
- *E.* None of the above.

14) Find the second derivative of function $f(x) = \frac{2x}{x+1}$.

A.
$$f''(x) = \frac{-4}{(x+1)^3}$$

B. $f''(x) = \frac{-2}{(x+1)^3}$
C. $f''(x) = \frac{2}{(x+1)^2}$
D. $f''(x) = \frac{1}{(x+1)^3}$
E. $f''(x) = \frac{-1}{(x+1)^3}$

15) Find all values for x where the following function's graph would have <u>horizontal</u> tangent lines to the graph.

$$f(x) = \frac{4}{3}x^3 - 2x^2 - 24x + 9$$

A. x = -1, 6 B. x = -2, 3 C. x = -6, 1 D. x = -3, 2 E. None of the above.

Exam 3A

16) Which of the following equations would be asymptotes to the graph of the rational function

$$g(x) = \frac{12x^2 + 6x}{6x^2 - 7x + 2}?$$
I $x = \frac{1}{2}$
II $y = 2$
III $x = -\frac{2}{3}$

- A. I, II, and III
- B. I and II only
- *C*. I and III only
- D. II and III only
- *E*. II only
- 17) Using data from a car magazine, a company constructed a mathematical model to represent the percent of cars P of a certain type still on the road after t years. This model was the following where P is a percent and t is the number of years the car has been 'on the road'.

$$P = 100e^{-0.035t}$$

Approximate the number of these types of cars on the road after 5 years. Round to the nearest whole number.

- *A.* 80 cars
- *B*. 76 cars
- *C*. 63 cars
- *D*. 72 cars
- *E.* 84 cars