Tej ing of butermik will be a $8^{\circ} \mathrm{C}$,

ID: 1.4.43

OA. $\frac{d A}{d t}+\frac{\mathrm{A}}{5+\mathrm{t}}=24, \mathrm{~A}(0)=20$
O B. $\frac{\mathrm{dA}}{\mathrm{dt}}+\frac{3 \mathrm{~A}}{20+2 \mathrm{t}}=20, \mathrm{~A}(0)=20$
OC. $\frac{\mathrm{dA}}{\mathrm{dt}}-\frac{\mathrm{A}}{20+4 t}=20, \mathrm{~A}(0)=20$

- .). $\frac{d \mathrm{~A}}{\mathrm{dt}}+\frac{3 \mathrm{~A}}{20+\mathrm{t}}=24, \mathrm{~A}(0)=20$

1D: Instructor-created question
Assume that $y=y(x)$ is a solution of the equation
$\left(3 x^{2}+y\right) d x+(x+2 y) d y=0$
and $y(1)=2$. Whatis the value of (2) ?

ID: Instructor-created question
If the function $f(x, y)$ is continuous near the point (a,b), then at least one solution of the differential equation $y^{\prime}=f(x, y)$ exists on some open inteval! Containing the point $x=a$ and, moreover, that fif addition the partial derivative $\frac{\partial x}{\partial y}$ is conitinuous near (a, b) then this solution is uniuve on some
 $\frac{d y}{d x}=\sqrt{x-y} ; y(1)=1$
Select the correct chice e elow and dilin in the answer box(es) to complete your choice
(Type an ordered pair)
The theorem implies the exsisence of a t least one solution because f (x, y) Is sontinuusu near the point \square. This solution is uniuue because $\frac{\partial f}{\partial y}=\square$ is also continuous near that same point.
8. The theorem inplies the exsistence of a t least on so solution because f $f(x, y)$ is continuuus near the point _._However, this solution is not necessarily unique because $\frac{\partial x}{\partial y}=\square$ is not continuuus near that same point.
-c. The theorem doe
ID: 1.3.15

.

$\frac{d y}{d x}+\frac{2}{x} y=8 x^{2} \sqrt{y}$
$y(1)=4$.
Whatis the value ofy $(\sqrt{2})$?
© A. $y(\sqrt{2})=\frac{25}{2}$
OB. $y(\sqrt{2})=\frac{5}{8}$
c. $y(\sqrt{2})=\frac{5}{2}$
D. $y(\sqrt{2})=\frac{25}{4}$
E. $y(\sqrt{2})=\frac{25}{8}$

1D: Instructor-created question

$\frac{d y}{d x}=5 \sin x+5 \sin y$

10: 1.3 .7

$\frac{\mathrm{dC}(t)}{\mathrm{dt}}=(\mathrm{C}(\mathrm{t})-300)(\mathrm{Cl}(\mathrm{t})-400)(600-C(t)$

- A. P1 will win the most money and P3 will lose the most mone
c. Players $\begin{aligned} & \text { P } 1 \text { and } P \text { P } 4 \text { will win win the same amount whil } P 2 \text { and } P \text { will lose the same amount. }\end{aligned}$
D. P 1 will win the most money and P 2 will lose the most money

ID: Instructor-created question
($y=y(t)$ is the solution of the intial value problem
$t y^{-}-y=$
$y(1)=3$
$y(1)=3$,

- A. $9+3 e^{-1}$
O. C. ${ }^{-1}$

Oc. $3 e$
O. $2+$

E. $3-e^{-5+5 e-1}$

Find the explicit parituluar solution of the differential equation for the intial value provided
$\frac{d y}{d x}=5 x^{2} y-y, y(1)=-3$
The explicit pariculuar solution of he differential equation is $y=-3 e^{\frac{5}{3^{3}} x^{3}-x-\frac{2}{3}}$.
10: 1.4.22
A population of tliapias in a pond, denoted by $x=x(t)$, where 1 tis counted in years, obeys the following differential equation
$\frac{d x}{d t}=1200 x-x^{2}$

OA. $T=\frac{1}{1200} n(13)$ years and 10 years the population will be close to 1000 tilapias
OB. $T=\frac{1}{1200} \ln (37)$ years and afer 10 years the population will be close to 13000 ilippias
O C. $T=\frac{1}{1200}$ In ($(12$) years and affer a long tine the population will be close to 1200 tilapias
© D. $T=\frac{1}{1200} \ln (13)$ years and after 11 years the population will be close to 12200 tilapias
OE. $T=\frac{1}{1200}$ n (15) years and after 10 years the population will be close to 0 1200 tilipias
ID: Instructor-created question
$\frac{d y}{d x}=\frac{y}{x}+\frac{x}{2(x+y)^{\prime}}$
which is satisifed for $x>0$. Suppose a solution $y(x)$ satisfies $y(1)=1$. What is the value of
$y\left(e^{\rho}\right)$?
OA. $2 e^{5}$
OB. $\sqrt{3} e^{5}-6 \ln 3$
OC. e^{5+3}
D. $-3 e^{-5}$

