| Student: \quadInstructor: Antonio PurdueMath
 Course: MA262 Fall2020 Coordinator
 Date:\quad Assignment: Online-Midterm 2 |
| :--- | :--- | :--- |

1. Find a linear homogeneous constant-coefficient equation with the given general solution.

$$
\left(A+B x+C x^{2}\right) e^{3 x}
$$

Choose the correct answer below.A. $y^{(4)}-12 y^{(3)}+54 y^{\prime \prime}-108 y^{\prime}+81 y=0$B. $y^{\prime}+3 y=0$C. $y^{(3)}-9 y^{\prime \prime}+27 y^{\prime}-27 y=0$D. $y^{\prime \prime}-6 y^{\prime}+9 y=0$
2. Three vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are given. If they are linearly independent, show this; otherwise, find a nontrivial linear combination of them that is equal to the zero vector.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
3 \\
-2 \\
11
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
5 \\
-7 \\
17
\end{array}\right]
$$

Select the correct answer below, and fill in the answer box(es) to complete your choice.
(-) A.

The vectors v_{1}, v_{2}, and v_{3} are linearly independent. The augmented matrix $\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & 0\end{array}\right]$ has an echelon for
(Type an integer or simplified fraction for each matrix element.)B. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are linearly dependent, because $4 \mathbf{v}_{1}+($ \qquad $) v_{2}+(\quad) v_{3}=0$. (Type integers or fractions.)
3. Find both a basis for the row space and a basis for the column space of the given matrix \mathbf{A}.
$\left[\begin{array}{rrrr}4 & 2 & -5 & 7 \\ 12 & 1 & 6 & 18 \\ 4 & -3 & 16 & 4 \\ 8 & -11 & 53 & 5\end{array}\right]$

A basis for the row space is $\left\{\left[\begin{array}{llll}4 & 2 & -5 & 7\end{array}\right],\left[\begin{array}{llll}0 & -5 & 21 & -3\end{array}\right]\right\}$.
(Use a comma to separate matrices as needed.)
A basis for the column space is $\left\{\left[\begin{array}{r}4 \\ 12 \\ 4 \\ 8\end{array}\right],\left[\begin{array}{r}2 \\ 1 \\ -3 \\ -11\end{array}\right]\right\}$.
(Use a comma to separate matrices as needed.)
4. Find a general solution to the differential equation given below. Primes denote derivatives with respect to t .
$56 y^{\prime \prime}-5 y^{\prime}-6 y=0$
A general solution is $\mathrm{y}(\mathrm{t})=\mathrm{c}_{\mathbf{1}} e^{\frac{3}{8} \mathrm{t}}+\mathrm{c}_{2} e^{-\frac{2}{7} \mathrm{t}}$.
5. Let a subset W be the set of all vectors in \mathbb{R}^{4} such that $x_{1}+4 x_{2}+5 x_{3}+6 x_{4}=0$. Apply the theorem for conditions for a subspace to determine whether or not W is a subspace of \mathbb{R}^{4}.

According to the theorem of conditions for a subspace, the nonempty subset W of the vector space V is a subspace of V if and only if it satisfies the following two conditions:
(i) If \mathbf{u} and \mathbf{v} are vectors in W , then $\mathbf{u}+\mathbf{v}$ is also in W.
(ii) If \mathbf{u} is in W and c is a scalar, then the vector cu is also in W .

Select the correct choice below.

A. W is not a subspace of \mathbb{R}^{4} because condition (ii) fails while condition (i) is satisfied.B. W is a subspace of \mathbb{R}^{4} because it satisfies both of the conditions.C. W is not a subspace of \mathbb{R}^{4} because both conditions (i) and (ii) fail.D. W is not a subspace of \mathbb{R}^{4} because condition (i) fails while condition (ii) is satisfied.6. Determine whether the given vectors \mathbf{u} and \mathbf{v} are linearly dependent or linearly independent.
$\mathbf{u}=\left[\begin{array}{r}-6 \\ 6\end{array}\right], \mathbf{v}=\left[\begin{array}{l}6 \\ 6\end{array}\right]$
Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice.A. The vectors are linearly dependent because \mathbf{v} is a scalar multiple of \mathbf{u}, specifically $\mathbf{v}=$ \qquad u. (Type an integer or a fraction.)B. The vectors are linearly independent because \mathbf{v} is a scalar multiple of \mathbf{u}, specifically $\mathbf{v}=$ \qquad u. (Type an integer or a fraction.)C. The vectors are linearly dependent because the only solution to the vector equation $a \mathbf{u}+\mathrm{bv}=\mathbf{0}$ is $\mathrm{a}=$ \qquad (Type integers or fractions.)D. The vectors are linearly independent because the only solution to the vector equation $a u+b v=0$ is $a=$ \qquad (Type integers or fractions.)
7. If A is a 3×5 matrix. Which of the following statements are correct?
I) There is only one 5×1 vector X such that $A X=0$.
II) There are infinitely many 5×1 vectors X such that $A X=0$.
III) If b is a an arbitrary $3 x 1$ vector, one can always find a $5 x 1$ vector X which satisfies the system $A X=b$.
IV) If b is a $3 x 1$ vector and X is a 5×1 vector such that $A X=b$, then there are infinitely many 5×1 vectors Y that satisfy $A Y=b$.A. Only I is true, II, III and IV are falseB. I and III are true, II and IV are falseC. II and IV are true, I and III are falseD. I and IV are true, II and III are falseE. Only II is true, I, III and IV are false
8. If $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 1 & 4\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 3 & 1 & 2\end{array}\right]$ and if $C=\left[c_{i j}\right]$ is the matrix such that $C A=B$, then which of the following statements is correct about the matrix C and its element $c_{i j}$ which is on the the i-th row and j-th column?A. C is a 2×3 matrix and $c_{11}=2$B. C is a 2×3 matrix and $c_{22}=-19$C. C is a 3×2 matrix and $c_{11}=0$D. C is a 2×3 matrix and $C_{12}=-1$E. C is a 3×2 matrix and $c_{13}=6$
9. Which of the following are true statements about the solutions of the system
$x_{1}-x_{2}+3 x_{3}=1$
$x_{1}+(b-1) x_{2}+x_{3}=2$
$x_{1}+x_{2}+x_{3}=b$,
where b is a constant?
I) The system has no solutions if $b=2$.
II) The system has only one solution if b is not equal to 2 .
III) The system has infinitely many solutions if $\mathrm{b}=2$.
IV) The system has no solutions if $b=4$.A. III and IV are true, I and II are falseB. I and II are true, III and IV are falseC. II and III are true, I and IV are falseD. I and IV are true, II and III are falseE. II is true, I, III and IV are false
10. Find a basis for the indicated subspace of \mathbf{R}^{3}.

The line of intersection of the planes with equations $x-5 y+3 z=0$ and $y=z$.
A basis for the indicated subspace of R^{3} is $\left\{\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]\right\}$.
(Use a comma to separate vectors as needed.)
11. If $y(x)$ is the solution of the following initial value problem
$y^{\prime \prime}(x)-5 y^{\prime}(x)+6 y(x)=0$
$y(0)=3$ and $y^{\prime}(0)=7$
then $y(\ln (2))$ (that is, the value of $y(x)$ when $x=\ln (2))$ is equal toA. 12B. 10C. 8D. 18E. 16

