MA262 — FINAL EXAM — FALL 2019 — DECEMBER 11, 2019 TEST NUMBER 11 — GREEN

INSTRUCTIONS:

- 1. Do not open the exam booklet until you are instructed to do so.
- 2. Before you open the booklet fill in the information below and use a # 2 pencil to fill in the required information on the scantron.
- 3. Mark your test number on your scantron
- 4. Once you are allowed to open the exam, make sure you have a complete test. There are 14 different test pages including this cover page.
- 5. Do any necessary work for each problem on the space provided or on the back of the pages of this test booklet. Circle your answers on this test booklet.
- 6. The exam has 25 problems and each one is worth 8 points. The maximum possible score is 200 points. No partial credit.
- 7. Do not leave the exam room during the first 20 minutes of the exam.
- 8. If you do not finish your exam in the first 100 minutes, you must wait until the end of the exam period to leave the room.
- 9. After you have finished the exam, hand in your scantron and your test booklet to your recitation instructor.

DON'T BE A CHEATER:

- 1. Do not give, seek or obtain any kind of help from anyone to answer questions on this exam. If you have doubts, consult only your instructor.
- 2. Do not look at the exam or scantron of another student.
- 3. Do not allow other students to look at your exam or your scantron.
- 4. You may not compare answers with anyone else or consult another student until after you have finished your exam, given it to your instructor and left the room.
- 5. Do not consult notes or books.
- 6. Do not handle phones or cameras, calculators or any electronic device until after you have finished your exam, given it to your instructor and left the room.
- 7. After time is called, the students have to put down all writing instruments and remain in their seats, while the TAs collect the scantrons and the exams.
- 8. Anyone who violates these instructions will have committed an act of academic dishonesty. Penalties for academic dishonesty include an F in the course. All cases of academic dishonesty will be reported to the Office of the Dean of Students.

I have read and understand the above statements regarding academic dishonesty:

STUDENT SIGNATURE: _____

STUDENT ID NUMBER: _____

SECTION NUMBER AND RECITATION INSTRUCTOR:

2

1. If

$$\begin{pmatrix} 1 & 5 & 3 \\ 4 & 2 & 6 \end{pmatrix} \begin{pmatrix} a & 1 \\ 0 & b \\ -b & -a \end{pmatrix} = \begin{pmatrix} 7 & -12 \\ 16 & -6 \end{pmatrix},$$

then

A. $a = 6, b = -\frac{1}{3}$ B. a = 10, b = 1C. a = 4, b = -1D. a = 7, b = 0E. a = 1, b = -2

2. If the system

$$3x + y - 5z = a$$
$$2x + 2y - 3z = b$$
$$x - y - 2z = c$$

is consistent, what can we conclude about a, b and c?

A. $c^{2} = a^{2}$ B. a + b = 6C. c = 3D. c = a - bE. c = a + b **3.** Find all the values of *a* such that

$$A = \begin{bmatrix} 1 & 1-a & 0\\ 1 & 0 & 0\\ 1 & 2 & a \end{bmatrix}$$

is invertible.

- A. $a \neq 0$ and $a \neq 1$.
- B. $a \neq 2$.
- C. $a \neq -1$.
- D. It is invertible for all values of a.
- E. $a \neq 0$

4. Which of the following statements about all 5×5 matrices is **true**?

- A. det(A+B) = det A + det B
- B. det $A^T = -\det(A)$.
- C. AB = 0 implies A = 0 or B = 0.
- D. If det A = 0 then some two rows are proportional.
- E. det(-A) = -det(A).

- 5. Let V be the set of positive real numbers. Let the definition of vector addition be $\mathbf{u} \oplus \mathbf{v} = e^{\mathbf{u}}e^{\mathbf{v}}$ for every \mathbf{u} and \mathbf{v} in V and the definition of multiplication by a scalar be $c \odot \mathbf{u} = e^{c\mathbf{u}}$ for every real number c and every \mathbf{u} in V. Which statement below is **not** true?
 - A. V is closed under vector addition.
 - B. V is closed under scalar multiplication.
 - C. The vector addition is commutative: $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ for every \mathbf{u} and \mathbf{v} in V.
 - D. It is true that $1 \odot \mathbf{u} = \mathbf{u}$ for every \mathbf{u} in V.
 - E. It is true that $0 \odot \mathbf{u} = 1$ for every \mathbf{u} in V.
- 6. Consider the real vector space \mathbb{M}_2 of all real 2×2 matrices. Let *B* be a fixed matrix in \mathbb{M}_2 . Which of the following sets is **not** a subspace of \mathbb{M}_2 ?
 - A. The set of all the matrices, A in \mathbb{M}_2 such that AB = BA.
 - B. The set of all the matrices, A in \mathbb{M}_2 such that AB = O, where O is the zero matrix in \mathbb{M}_2 .
 - C. The set of all the matrices, A in \mathbb{M}_2 such that $A^2 = O$, where O is the zero matrix in \mathbb{M}_2 .
 - D. All the upper triangular matrices in \mathbb{M}_2 .
 - E. All the symmetric matrices in \mathbb{M}_2 .

7. What is the dimension of the space span
$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

8. Let
$$A = \begin{pmatrix} 2 & -1 & -2 \\ -4 & 2 & 4 \\ -8 & 4 & 8 \end{pmatrix}$$
. Then the following is a basis of the nullspace of A .
A. $\{[2 - 4 - 8]^T, [-1 \ 2 \ 4]^T, [-2 \ 4 \ 8]^T\}$
B. $\{[1 \ 0 \ 1]^T, [1 \ 2 \ 0]^T\}$
C. $\{[1 \ 0 \ 1]^T, [1 \ 2 \ 0]^T, [3 \ 2 \ 2]^T\}$
D. $\{[1 \ 0 \ 1]^T\}$
E. $\{[0 \ 2 \ 1]^T\}$

- **9.** Let A be an $m \times n$ matrix. Then the linear system $A\mathbf{x} = \mathbf{b}$ has a solution for any $m \times 1$ matrix **b** if and only if
 - A. m = n.
 - B. Nullity(A) = m.
 - C. $\operatorname{Rank}(A) + \operatorname{Nullity}(A) = n$.
 - D. A = I the identity matrix.
 - E. $\operatorname{Rank}(A) = m$.

10. Let $L : \mathbb{R}_2 \to \mathbb{R}_2$ be a linear transformation for which we know that

 $L (\begin{bmatrix} 1 & 1 \end{bmatrix}) = \begin{bmatrix} 1 & -2 \end{bmatrix}, L (\begin{bmatrix} 1 & -1 \end{bmatrix}) = \begin{bmatrix} 2 & 1 \end{bmatrix}.$ What is $L (\begin{bmatrix} 3 & 1 \end{bmatrix})$? A. $\begin{bmatrix} 3 & 1 \end{bmatrix}$ B. $\begin{bmatrix} 1 & -2 \end{bmatrix}$ C. $\begin{bmatrix} 2 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 4 & -3 \end{bmatrix}$ E. $\begin{bmatrix} 5 & -5 \end{bmatrix}$

- **11.** Which of the following statements is correct?
 - A. An eigenvector of a matrix may correspond to two distinct eigenvalues of the matrix.
 - B. Any 2×2 matrix must have two linearly independent eigenvectors.
 - C. If **x** is an eigenvector of a matrix A, then c**x** is also an eigenvector of A, where c is any nonzero scalar.
 - D. Any 2×2 matrix can not have complex eigenvalues.
 - E. If a 2×2 matrix A is similar to a diagonal matrix D, then D must be unique.

- 12. Which one of the following statements correctly describes eigenvalues of a real $n \times n$ symmetric matrix M?
 - A. All eigenvalues are real numbers.
 - B. Sometimes M can have no eigenvalues at all.
 - C. Some eigenvalues are real and some are not.
 - D. M has always n distinct real eigenvalues.
 - E. M has always n distinct complex eigenvalues.

13. The solution of
$$\frac{dy}{dx} - \frac{2}{x}y = x^2 - 1$$
 with $y(1) = 3$ is
A. $y = x^3 + x + 1$
B. $y = x^3 + x^2 + 1$
C. $y = x^3 + x^2 + x$
D. $y = x^3 - x^2 + 3x$
E. $y = x^4 + x^2 + 1$

14. An implicit solution of
$$y' = \frac{2x}{y + x^2 y}$$
 is
A. $y^2 = 2 \ln(1 + x^2) + C$
B. $y^2 = C \ln(1 + x^2)$
C. $\frac{1}{2}y^2 = \ln x^2 + C$
D. $y^2 = \ln(1 + x^2) + C$
E. $\frac{1}{2}y^2 = \ln |1 + x| + C$

15. The substitution $v = \frac{y}{x}$ transforms the equation $\frac{dy}{dx} = \sin\left(\frac{y}{x}\right)$ into A. $v' = \sin(v)$ B. $v' = x \sin(v)$ C. $v' + v = \sin(v)$ D. $xv' + v = \sin(v)$ E. $v' + xv = \sin(v)$

16. The solution in implicit form of

$$\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$$

is:

A.
$$x^{2} + y^{2} = x^{3} + C$$

B. $x^{2} + y^{2} = Cx^{3}$
C. $x^{2} + x^{3} = y^{2} + C$
D. $Cx^{2} = x^{3} + y^{2}$
E. $x^{2} + y^{3} + xy^{2} = C$

17. Solve the differential equation

$$(2xy + x3)dx + (x2 + y3 + 2)dy = 0, \quad y(0) = 2.$$

A.
$$x^2y + 2y = 4$$

B. $x^4 + 2y = 8$
C. $x^2y + \frac{1}{4}x^4 + \frac{1}{4}y^4 + 2y = 8$
D. $x^2y + \frac{1}{4}x^4 + \frac{1}{4}y^4 = 0$
E. $\frac{1}{4}x^4 + \frac{1}{4}y^4 = 8$

18. A ball of mass 5 kg. is thrown upward with an initial velocity of 10 (m/sec). If we neglect the air resistance, the maximum height that the ball can reach is: $(g = 9.8 \text{ m/sec}^2)$

A. $\frac{100}{g}$ B. $\frac{50}{g}$ C. 50gD. $\frac{10}{g}$ E. $\frac{20}{g}$ **19.** The function $y_1 = t$ is a solution of the differential equation

$$t^2 \frac{d^2 y}{dt^2} + 2t \frac{dy}{dt} - 2y = 0, \quad t > 0.$$

Find another solution $y_2(t)$ such that y_1, y_2 form a set of fundamental solutions.

A. $y_2 = t^2$ B. $y_2 = t^{-2}$ C. $y_2 = t^3$ D. $y_2 = t \ln t$ E. $y_2 = t^2 \ln t$

- **20.** A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in. and then released, and if there is no damping. Let u be the displacement from equilibrium and is measured in feet. Determine u of the mass at any time t.
 - A. $u(t) = \sin(8t)$ B. $u(t) = \cos(8t)$ C. $u(t) = \sin(2t) + \cos(4t)$ D. $u(t) = \frac{1}{4}\sin(\sqrt{2}t)$ E. $u(t) = \frac{1}{4}\cos(8t)$

- **21.** Which of the following forms a fundamental set of solutions to the homogeneous differential equation $y^{(4)} 2y'' + y = 0$.
 - A. $\{e^t, te^t, e^{-t}, te^{-t}\}$
 - B. $\{\cos t, \sin t, e^t, e^{-t}\}$
 - C. $\{\cos t, t \sin t, t \cos t, \sin t\}$
 - D. $\{e^t, e^{-t}\}$
 - E. $\{e^t \cos t, e^t \sin t, e^{-t} \cos t, e^{-t} \sin t\}$

22. Find the general solution of

$$y^{(4)} - 5y'' + 4y = 0.$$

A.
$$y(t) = c_1 e^t + c_2 e^{-t}$$

B. $y(t) = c_1 e^t + c_2 e^{-t} + c_3 e^{2t} + c_4 e^{-2t}$
C. $y(t) = c_1 e^{2t} + c_2 e^{-2t}$
D. $y(t) = c_1 e^t + c_2 e^{2t}$
E. $y(t) = c_1 e^{-t} + c_2 e^{-2t}$

23. A particular solution of the equation

$$D(D+1)^2(D^2+1)y = 9\cos(t) + 2e^{-t} - 5t$$

is of the form

A.
$$y_p(t) = c_1 t^2 \cos(t) + c_2 t^2 \sin(t) + c_3 t e^{-t} + t(c_4 t + c_5)$$

B. $y_p(t) = c_1 t^2 \cos(t) + c_2 t^2 \sin(t) + c_3 t^2 e^{-t} + c_4 t + c_5$
C. $y_p(t) = c_1 t \cos(t) + c_2 t \sin(t) + c_3 t^2 e^{-t} + c_4 t + c_5$
D. $y_p(t) = c_1 t \cos(t) + c_2 t \sin(t) + c_3 t e^{-t} + c_4 t^2 + c_5 t$
E. $y_p(t) = c_1 t \cos(t) + c_2 t \sin(t) + c_3 t^2 e^{-t} + c_4 t^2 + c_5 t$

24. Which of the following is the general solution to the system

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 \\ -4 \end{pmatrix} e^{t}$$

A. $c_1 \begin{pmatrix} -1 \\ 4 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}$
B. $c_1 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{t}$
C. $c_1 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{t}$
D. $c_1 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{t}$
E. $c_1 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-t}$

25. Which of the following is the general solution to the system

$$\mathbf{x}' = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \mathbf{x}$$
A. $c_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} e^{-t}$
B. $c_1 \begin{pmatrix} 1 \\ 5 \end{pmatrix} e^{-4t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t}$
C. $c_1 \begin{pmatrix} \cos t \\ 2\cos t - \sin t \end{pmatrix} e^t + c_2 \begin{pmatrix} -\sin t \\ -2\sin t - \cos t \end{pmatrix} e^t$
D. $c_1 \begin{pmatrix} 1 \\ -5 \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-2t}$
E. $c_1 \begin{pmatrix} 2\cos t + \sin t \\ \cos t \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 2\sin t - \cos t \\ \sin t \end{pmatrix} e^{-t}$