Student:

Date: \qquad

Instructor: Antonio PurdueMath Course: MA262 Fall2020 Coordinator Assignment: Online Final Exam course

1. The phase portrait to the right corresponds to a linear system of the form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ in which the matrix \mathbf{A} has two linearly independent eigenvectors. Determine the nature of the eigenvalues of the system.

Click here to view page 1 of Gallery of Typical Phase Portraits for the System $x^{\prime}=A x:$ Nodes ${ }^{7}$
Click here to view page 2 of Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes ${ }^{8}$
Click here to view page 3 of Gallery of Typical Phase Portraits for the System $x^{\prime}=A x:$ Nodes 9

The phase portrait to the right corresponds to a linear system of the form in which the matrix A has two linearly independent eigenvectors. Determine the nature of the eigenvalues of the system.

Click here to view page 1 of Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes
Click here to view page 2 of Gallery of Typical Phase Portraits for the System x'=Ax: Nodes
Click here to view page 3 of Gallery of Typical Phase Portraits for the System x'=Ax: Nodes

The system shows (1) \qquad and its eigenvalues are (2) \qquad and it has two linearly independent eigenvectors (3) \qquad
distinct, real, with one zero, distinct, negative, and real, complex with a positive real part, complex with a negative real part, distinct, opposite in sign, and real, repeated, real, and zero, distinct, positive, and real, purely imaginary,
repeated, negative, and real, repeated, positive, and real,
The system shows and its eigenvalues are linearly independent eigenvectors that are approximately @MATX\{\{1\};\{-1\}\} and @MATX\{\{1\};\{2\}\}. about which nothing else can be inferred.
that are approximately @MATX\{\{1\};\{0\}\} and @MATX\{\{1\};\{2\}\}.
that are approximately @MATX\{\{1\};\{0\}\} and @MATX\{\{0\};\{1\}\}.

1: Test

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Proper Nodal Source: A repeated positive real eigenvalue with two linearly independent eigenvectors.

Proper Nodal Sink: A repeated negative real eigenvalue with two linearly independent eigenvectors.

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real eigenvalue without two linearly independent eigenvectors (right).

2: Definition

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real eigenvalue without two linearly independent eigenvectors (right).

Saddle Point: Real eigenvalues of opposite sign.

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Spiral Source: Complex conjugate eigenvalues with positive real part.

Parallel Lines: One zero and one negative real eigenvalue. (If the nonzero eigenvalue is positive, then the trajectories flow away from the dotted line.)

Spiral Sink: Complex conjugate eigenvalues with negative real part.

Parallel Lines: A repeated zero eigenvalue without two linearly independent eigenvectors.
(1)a proper nodal sink an improper nodal sink parallel linesa spiral sourcea proper nodal source
(2)distinct, negative, and real, complex with a negative real part, complex with a positive real part,
purely imaginary, repeated, positive, and real,repeated, negative, and real,
(3)about which nothing else can be inferred.that are approximately $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 5\end{array}\right]$. that are approximately $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 5\end{array}\right]$that are approximately $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
2. Transform the given system of differential equations into an equivalent system of first-order differential equations.

$$
\begin{aligned}
& x^{\prime \prime}+5 x^{\prime}+5 x+2 y=0 \\
& y^{\prime \prime}+3 y^{\prime}+2 x-2 y=\sin t
\end{aligned}
$$

Transform the given system of differential equations into an equivalent system of first-order differential equations.

$$
\begin{aligned}
& x^{\prime \prime}-4 x^{\prime}+5 x-2 y=0 \\
& y^{\prime \prime}-2 y^{\prime}+5 x-5 y=\cos t
\end{aligned}
$$

Let $x_{1}=x, x_{2}=x^{\prime}, y_{1}=y$, and $y_{2}=y^{\prime}$. Complete the system below.
$x_{1}{ }^{\prime}=$
x_{2}
$x_{2}{ }^{\prime}=-5 x_{2}-5 x_{1}-2 y_{1}$
$y_{1}{ }^{\prime}=$ y_{2}
$y_{2}{ }^{\prime}=-3 y_{2}-2 x_{1}+2 y_{1}+\sin t$

Let. Complete the system below.

x@Sub\{2\}

@PRIME\{x@Sub\{2\}\}
=
4x@SUB\{2\}-5x@SUB\{1\}+2y@SUB\{1\}
@PRIME\{y@Sub\{1\}\}
=
y@SUB\{2\}
@PRIME\{y@Sub\{2\}\}
=
2y@SUB\{2\}-5x@SUB\{1\}+5y@SUB\{1\}+cos t
3. Find the general solutions of the system.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rrr}
5 & 0 & 0 \\
-1 & 6 & 1 \\
0 & 0 & 5
\end{array}\right] \mathbf{x}
$$

Find the general solutions of the system.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rrr}
2 & 0 & 0 \\
-2 & 4 & 2 \\
0 & 0 & 2
\end{array}\right] \mathbf{x}
$$

$\mathbf{x}(\mathrm{t})=\mathrm{C}_{1} e^{\mathbf{5 t}} \cdot\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\mathrm{C}_{2} e^{5 \mathrm{t}} \cdot\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+\mathrm{C}_{3} e^{6 \mathrm{t}} \cdot\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
4. What can be said about the following statements?
I) If A and B are square matrices, and $\operatorname{det}(B)$ is not equal to zero and B^{-1} is the inverse of B, then $B A B^{-1}-\lambda I=B(A-\lambda I) B^{-1}$ and so the matrices A and $B A B^{-1}$ have the same eigenvalues.
II) If A is a square matrix and A^{\top} is the transpose of A, then $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(A^{\top}-\lambda I\right)$ and so A and A^{\top} have the same eigenvalues.
III) If A is a square matrix and $\operatorname{det}(A)$ is not equal to zero. If A^{-1} is the inverse of A and if λ is an eigenvalue of A then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.
IV) If a 4×4 matrix A is defective, then it must have one eigenvalue of multiplicity three.
A. I and III are true. II and IV are falseB. I, II and IV are true. III is falseC. I, III and IV are true. II is falseD. I, II and III are true. IV is falseE. I and II are true. III and IV are false

What can be said about the following statements?
I) If A and B are square matrices, and $\operatorname{det}(B)$ is not equal to zero and is the inverse of B, then and so the matrices A and have the same eigenvalues.
II) If A is a square matrix and is the transpose of A, then and so A and have the same eigenvalues.
III) If A is a square matrix and $\operatorname{det}(A)$ is not equal to zero. If is the inverse of A and if is an eigenvalue of A then is an eigenvalue of .
IV) If a 4×4 matrix A is defective, then it must have one eigenvalue of multiplicity three.

I, II and III are true. IV is false

I and III are true. II and IV are false
I, II and IV are true. III is false I and II are true. III and IV are false I, III and IV are true. II is false
5. Let $y(x)$ satisfy the following initial value problem:
$y^{\prime \prime}(x)+y(x)=\boldsymbol{\operatorname { t a n }}(x)$
$y(0)=0$ and $y^{\prime}(0)=-1$
Then $\mathrm{y}\left(\frac{\pi}{4}\right)$ (which is the value of $\mathrm{y}(\mathrm{x})$ when $\left.\mathrm{x}=\frac{\pi}{4}\right)$ is equal to:A. $y\left(\frac{\pi}{4}\right)=\sqrt{2}-\frac{\sqrt{2}}{2} \ln (1+\sqrt{2})$B. $y\left(\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2} \ln (1+\sqrt{2})$C. $y\left(\frac{\pi}{4}\right)=-3 \sqrt{2}-\sqrt{2} \ln (1+\sqrt{2})$D. $y\left(\frac{\pi}{4}\right)=\sqrt{2}+\frac{\sqrt{2}}{2} \ln (1+\sqrt{2})$E. $y\left(\frac{\pi}{4}\right)=2 \sqrt{2}-\ln (1+\sqrt{2})$

Let $y(x)$ satisfy the following initial value problem:

Then (which is the value of $y(x)$ when) is equal to:
y(@DIV\{\π 4$\})=-@ D I V\{@ R T\{2\} ; 2\} \operatorname{In}(1+@ R T\{2\})$
y(@DIV\{\π;4\})=2@RT\{2\}-In(1+@RT\{2\})
y(@DIV\{\π;4\})=-3@RT\{2\}-@RT\{2\}In(1+@RT\{2\})
y(@DIV\{\π;4\})=@RT\{2\} + @DIV\{@RT\{2\};2\}In(1+@RT\{2\})
y(@DIV\{\π;4\})= @RT\{2\} - @DIV\{@RT\{2\};2\} In(1+@RT\{2\})
6. Categorize the eigenvalues and eigenvectors of the coefficient matrix A according to the accompanying classifications and sketch the phase portrait of the system by hand. Then use a computer system or graphing calculator to check your answer.

System of equations	Matrix equation
$x_{1}{ }^{\prime}=5 x_{1}+7 x_{2}$ $x_{2}{ }^{\prime}=7 x_{1}+5 x_{2}$	$\mathbf{x}^{\prime}=\left[\begin{array}{ll}5 & 7 \\ 7 & 5\end{array}\right] \mathbf{x}$
Eigenvalues	Eigenvectors
$\lambda_{1}=-2, \lambda_{2}=12$	$\mathbf{v}_{1}=\left[\begin{array}{r}-1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Click here to view page 1 of Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes ${ }^{10}$
Click here to view page 2 of Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes ${ }^{11}$
Click here to view page 3 of Gallery of Typical Phase Portraits for the System x'=Ax: Nodes ${ }^{12}$
Categorize the eigenvalues and eigenvectors of the coefficient matrix
A according to the accompanying classifications and sketch the phase portrait of the system by hand. Then use a computer system or graphing calculator to check your answer.

System of equations	Matrix equation
$x_{1}{ }^{\prime}=2 x_{1}+6 x_{2}$ $x_{2}{ }^{\prime}=6 x_{1}+2 x_{2}$	$\mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & 6 \\ 6 & 2\end{array}\right] \mathbf{x}$
Eigenvalues	Eigenvectors
$\lambda_{1}=-4, \lambda_{2}=8$	$\mathbf{v}_{1}=\left[\begin{array}{r}-1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Click here to view page 1 of Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes Click here to view page 2 of Gallery of Typical Phase Portraits for the System x'=Ax: Nodes Click here to view page 3 of Gallery of Typical Phase Portraits for the System x'=Ax: Nodes

The system shows (1) \qquad and its eigenvalues are (2)

Sketch a graph of the phase portrait. Choose the correct answer below.
$\bigcirc \mathbf{A}$.

B.

(-) \mathbf{C}

an improper nodal source
parallel lines a proper nodal sink an improper nodal sink a proper nodal source a center a spiral source a spiral sink a saddle point
The system shows
distinct, positive, and real. complex with a positive real part. distinct, real, with one zero. distinct, opposite in sign, and real. repeated, real, and zero.
complex with a negative real part.
purely imaginary.
repeated, positive, and real.
repeated, negative, and real.
Sketch a graph of the phase portrait. Choose the correct answer below.

4: Test

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Proper Nodal Source: A repeated positive real eigenvalue with two linearly independent eigenvectors.

Proper Nodal Sink: A repeated negative real eigenvalue with two linearly independent eigenvectors.

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real eigenvalue without two linearly independent eigenvectors (right).

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real eigenvalue without two linearly independent eigenvectors (right).

Saddle Point: Real eigenvalues of opposite sign.

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Spiral Source: Complex conjugate eigenvalues with positive real part.

Parallel Lines: One zero and one negative real eigenvalue. (If the nonzero eigenvalue is positive, then the trajectories flow away from the dotted line.)

Spiral Sink: Complex conjugate eigenvalues with negative real part.

Parallel Lines: A repeated zero eigenvalue without two linearly independent eigenvectors.
(1) \bigcirc a proper nodal source a spiral sink (a saddle pointa spiral sourcea proper nodal sinka center an improper nodal sink
\square parallel lines
(2) complex with a negative real part.distinct, positive, and real.purely imaginary.repeated, negative, and real. complex with a positive real part.
7. Three 234-gal fermentation vats are connected as indicated in the figure, and the mixtures in each tank are kept uniform by stirring. Denote by $x_{i}(t)$ the amount (in pounds) of alcohol in tank T_{i} at time t ($\mathrm{i}=1,2,3$). Suppose that the mixture circulates between the tanks at the rate of $18 \mathrm{gal} / \mathrm{min}$. Derive the equations.

```
\(13 x_{1}{ }^{\prime}=-x_{1} \quad+x_{3}\)
\(13 x_{2}{ }^{\prime}=x_{1}-x_{2}\)
\(13 x_{3}{ }^{\prime}=\quad x_{2}-x_{3}\)
165
```


Three -gal fermentation vats are connected as indicated in the figure, and the mixtures in each tank are kept uniform by stirring. x@Sub\{i\}
Denote by (t) the amount (in pounds) of alcohol in tank
(i
T@Sub\{i\}
$=$
at time $\mathrm{t} 1,2,3$). Suppose that the mixture circulates 15
between the tanks at the rate of $\mathrm{gal} / \mathrm{min}$. Derive the equations.

```
11@PRIME\{x@Sub\{1\}\}= \(x @ \operatorname{Sub}\{1\} \quad+x @ \operatorname{sub}\{3\}\)
11@PRIME \(\{x @ S u b\{2\}\}=x @ \operatorname{Sub}\{1\}^{-}\)x@sub\{2\}
11@PRIME\{x@Sub\{3\}\}= x@Sub\{2\}-x@sub\{3\}
```

Calculate the concentration of alcohol in each tank.

The alcohol concentration in tank T_{1} is $\quad \frac{x_{1}}{23}$
(1)
(2) \qquad
The alcohol concentration in tank T_{2} is

(3) \qquad

Calculate the rate of change of the amount of alcohol in each tank.
$x_{1}{ }^{\prime}=-\frac{x_{1}}{13}+\frac{x_{3}}{13}$
(4) \qquad
$x_{2}{ }^{\prime}=\frac{x_{1}}{13}-\frac{x_{2}}{13}$
(5) \qquad
$x_{3}{ }^{\prime}=\underline{\frac{x_{2}}{13}-\frac{x_{3}}{13}}$
(6) \qquad

What final step is needed to obtain the derived equations given in the problem statement?
Multiply both sides of the first equation by \qquad 13
Multiply both sides of the second equation by \qquad .
Multiply both sides of the third equation by 13

Calculate the concentration of alcohol in each tank.
@div\{gallons;pound\}.
pounds.
gallons.
@div\{pounds;gallon\}.
T@Sub\{2\} @DIV\{x@SUB\{2\};165\}
The alcohol concentration in tank
gallons.
@div\{gallons; pound\}.
pounds.
@div\{pounds;gallon\}.
T@Sub\{3\} @DIV\{x@SUB\{3\};165\}
The alcohol concentration in tank
is @div\{gallons;pound\}.
pounds.
gallons.
@div\{pounds;gallon\}.
Calculate the rate of change of the amount of alcohol in each tank.

-@DIV\{x@SUB\{1\};11\}+@DIV\{x@SUB\{3\};11\}

@div\{minutes;pound\}
@div\{pounds;minute\}
@div\{gallons;minute\}
@div\{minutes;gallon\}
@PRIME\{x@Sub\{2\}\}
=
@DIV\{x@SUB\{1\};11\}-@DIV\{x@SUB\{2\};11\}
@div\{pounds;minute\}
@div\{gallons;minute\}
@div\{minutes;pound\}
@div\{minutes;gallon\}
@PRIME\{x@Sub\{3\}\}
=
@DIV\{x@SUB\{2\};11\}-@DIV\{x@SUB\{3\};11\}
@div\{minutes;pound\}
@div\{pounds;minute\}
@div\{minutes;gallon\}
@div\{gallons;minute\}
What final step is needed to obtain the derived equations given in the problem statement?
11
Multiply both sides of the first equation by .
11
Multiply both sides of the second equation by .
11
Multiply both sides of the third equation by .
(1)

pounds. gallons	(2) gallons. gallons
ound	d
gallons.	pounds.
pounds	pounds
gallon	gallon

(3)pounds
gallons.
$\frac{\text { pounds }}{\text { gallon }}$.
$\frac{\text { gallons }}{\text { pound }}$.
(4)

(5)
pounds
minute
$\frac{\text { gallons }}{\text { minute }}$
$\frac{\text { minutes }}{\text { gallon }}$
$\frac{\text { minutes }}{\text { pound }}$
(6)
$\frac{\text { gallons }}{\text { minute }}$
$\frac{\text { minutes }}{\text { pound }}$
$\frac{\text { minutes }}{\text { gallon }}$
pounds
minute
8. Let $y(t)$ be the solution of the following equalton representing a spring-mass system:
$y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y(t)=0$
$y(0)=A$ and $y^{\prime}(0)=B$
with $\mathrm{A} \neq 0$ and $\mathrm{B} \neq 0$. Then $\frac{\mathrm{y}(\pi)}{\mathrm{y}(3 \pi)}$ (this is the quotient of the values of $\mathrm{y}(\pi)$ and $\left.\mathrm{y}(3 \pi)\right)$ is equal to.A. $e^{4 \pi} \frac{\mathrm{~A}}{\mathrm{~B}}$B. $e^{4 \pi}$C. $e^{-4 \pi}$D. $e^{4 \pi} \frac{\mathrm{~B}}{\mathrm{~A}}$E. $e^{\pi} \mathrm{A}+e^{3 \pi} \mathrm{~B}$

Let be the solution of the following equalton representing a spring-mass system:
with Then (this is the quotient of the values of and) is equal to.

```
e@Sup{-4&pi;}
e@Sup{4&pi;}@DIV{ A;B}
e@Sup{&pi;}A + e@Sup{3&pi;}B
e@Sup{4&pi;}@DIV{ B;A}
e@Sup{4&pi;}
```

9. The appropriate form of a particular solution of the differential equation
$(D-1)^{3}(D-3)^{4}\left(D^{2}+1\right) y(x)=x^{3} e^{x}+x^{4} e^{3 x}+x^{2} \sin (x)$
is of the form
$y_{p}(x)=x^{3} p_{1}(x) e^{x}+x^{4} p_{2}(x) e^{3 x}+x p_{3}(x) \boldsymbol{\operatorname { s i n }}(x)+x p_{4}(x) \boldsymbol{\operatorname { c o s }}(x)$,
where $p_{1}(x)$ is a polynomial of degree $d_{1}, p_{2}(x)$ is a polynomial of degree $d_{2}, p_{3}(x)$ is a polynomial of degree d_{3}, and $p_{4}(x)$ is a polynomial of dgree d_{4}. Which of the following is true?A. $d_{1}=1, d_{2}=3, d_{3}=2$ and $d_{4}=2$B. $d_{1}=3, d_{2}=3, d_{3}=1$ and $d_{4}=1$C. $d_{1}=2, d_{2}=2, d_{3}=1$ and $d_{4}=1$D. $d_{1}=3, d_{2}=4, d_{3}=2$ and $d_{4}=2$E. $d_{1}=3, d_{2}=4, d_{3}=1$ and $d_{4}=1$

The appropriate form of a particular solution of the differential equation
is of the form
where is a polynomial of degree, is a polynomial of degree, is a polynomial of degree, and is a polynomial of dgree . Which of the following is true?

```
d@Sub{1}=3, d@Sub{2}=3, d@Sub{3}=1 and d@Sub{4}=1
d@Sub{1}=2, d@Sub{2}=2, d@Sub{3}=1 and d@Sub{4}=1
d@Sub{1}=1, d@Sub{2}=3, d@Sub{3}=2 and d@Sub{4}=2
d@Sub{1}=3, d@Sub{2}=4, d@Sub{3}=1 and d@Sub{4}=1
d@Sub{1}=3, d@Sub{2}=4, d@Sub{3}=2 and d@Sub{4}=2
```

10. Find the general solution of the given system. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the system.
$\mathbf{x}^{\prime}=\left[\begin{array}{rr}3 & 1 \\ -1 & 1\end{array}\right] \mathbf{x}$
Find the general solution of the given system. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the system.
$\mathbf{x}^{\prime}=\left[\begin{array}{rr}5 & 1 \\ -1 & 3\end{array}\right] \mathbf{x}$
What is the general solution to the system?
$\mathbf{x}(\mathrm{t})=\mathbf{C}_{1} e^{2 \mathrm{t}} \cdot\left[\begin{array}{r}1 \\ -1\end{array}\right]+\mathbf{C}_{2} e^{2 \mathrm{t}} \cdot\left[\begin{array}{r}\mathrm{t} \\ -\mathrm{t}+1\end{array}\right]$
Graph the direction field with several solution curves. Choose the correct graph below.A.B.

© \mathbf{C}

What is the general solution to the system?

C@SUB\{1\}e@SUP\{4t\}*@MATX\{\{1\};\{-1\}\}+C@SUB\{2\}e@SUP\{4t\}*@MATX\{\{t\};\{-t+1\}\}

Graph the direction field with several solution curves. Choose the correct graph below.
11. Apply the eigenvalue method to find a general solution of the given system. Find the particular solution corresponding to the given initial values. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system.

$$
x_{1}^{\prime}=3 x_{1}+4 x_{2}, x_{2}^{\prime}=3 x_{1}+2 x_{2}, x_{1}(0)=x_{2}(0)=1
$$

Apply the eigenvalue method to find a general solution of the given system. Find the particular solution corresponding to the given initial values. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system.

$$
x_{1}^{\prime}=3 x_{1}+4 x_{2}, x_{2}^{\prime}=3 x_{1}+2 x_{2}, x_{1}(0)=x_{2}(0)=1
$$

The general solution in matrix form is $\mathbf{x}(\mathrm{t})=\left[\begin{array}{l}4 \mathbf{c}_{\mathbf{1}} e^{6 \mathbf{t}}+\mathbf{c}_{\mathbf{2}} e^{-\mathbf{t}} \\ 3 \mathbf{c}_{\mathbf{1}} e^{6 \mathbf{t}}-\mathbf{c}_{\mathbf{2}} e^{-\mathbf{t}}\end{array}\right]$.
The particular solution in matrix form is $x(t)=\left[\begin{array}{l}\frac{8}{7} e^{6 t}-\frac{1}{7} e^{-t} \\ \frac{6}{7} e^{6 t}+\frac{1}{7} e^{-t}\end{array}\right]$.
Choose the correct graph below.
(-) \mathbf{A}.

B

\bigcirc c.

The general solution in matrix form is

@MATX\{\{4c@Sub\{1\}e@Sup\{6t\}+c@Sub\{2\}e@Sup\{-t\}\};\{3c@Sub\{1\}e@Sup\{6t\}-c@Sub\{2\}e@Sup\{-t\}\}\}

The particular solution in matrix form is
@MATX\{\{@DIV\{8;7\}e@SUP\{6t\}-@DIV\{1;7\}e@SUP\{-t\}\};\{@DIV\{6;7\}e@SUP\{6t\}+@DIV\{1;7\}e@SUP\{-t\}\}\}

Choose the correct graph below.
12. Apply the eigenvalue method to find a general solution of the given system. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system.

$$
x_{1}^{\prime}=10 x_{1}-10 x_{2}, x^{\prime}{ }_{2}=8 x_{1}+2 x_{2}
$$

Apply the eigenvalue method to find a general solution of the given system. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system.

$$
x_{1}^{\prime}=6 x_{1}-5 x_{2}, x_{2}^{\prime}=4 x_{1}+2 x_{2}
$$

What is the general solution in matrix form?

$$
x(t)=\left[\begin{array}{r}
\mathbf{c}_{1} e^{6 t}(\cos 8 t-2 \sin 8 t)+\mathbf{c}_{2} e^{6 t}(2 \cos 8 t+\sin 8 t) \\
\mathbf{c}_{1} e^{6 t}(2 \cos 8 t)+\mathbf{c}_{2} e^{6 t}(2 \sin 8 t)
\end{array}\right]
$$

Choose the correct graph below.
A.

B.
C.

What is the general solution in matrix form?
@MATX\{\{c@Sub\{1\}e@Sup\{4t\}(cos4t-2sin4t)+c@Sub\{2\}e@Sup\{4t\}(2cos4t+sin4t)\};\{c@Sub\{1\}e@Sup\{4t\}(2cos4t)+c@
Choose the correct graph below.

7: Test
Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Proper Nodal Source: A repeated positive real eigenvalue with two linearly independent eigenvectors.

Proper Nodal Sink: A repeated negative real eigenvalue with two linearly independent eigenvectors.

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real eigenvalue without two linearly independent eigenvectors (right).

8: Definition

Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real eigenvalue without two linearly independent eigenvectors (right).

Saddle Point: Real eigenvalues of opposite sign.

Spiral Source: Complex conjugate eigenvalues with positive real part.

Parallel Lines: One zero and one negative real eigenvalue. (If the nonzero eigenvalue is positive, then the trajectories flow away from the dotted line.)

Spiral Sink: Complex conjugate eigenvalues with negative real part.

Parallel Lines: A repeated zero eigenvalue without two linearly independent eigenvectors.

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Proper Nodal Source: A repeated positive real eigenvalue with two linearly independent eigenvectors.

Proper Nodal Sink: A repeated
negative real eigenvalue with two linearly independent eigenvectors.

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real eigenvalue without two linearly independent eigenvectors (right).

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real eigenvalue without two linearly independent eigenvectors (right).

Saddle Point: Real eigenvalues of opposite sign.

Center: Pure imaginary eigenvalues.

Gallery of Typical Phase Portraits for the System $x^{\prime}=A x$: Nodes

Spiral Source: Complex conjugate eigenvalues with positive real part.

Parallel Lines: One zero and one negative real eigenvalue. (If the nonzero eigenvalue is positive, then the trajectories flow away from the dotted line.)

Spiral Sink: Complex conjugate eigenvalues with negative real part.

Parallel Lines: A repeated zero eigenvalue without two linearly independent eigenvectors.

