1. Find the angle between the curves at the indicated point.

\[r_1(t) = (\cos t)i + (\sin t)i + tk, \]

at \((1, 0, 0)\).

\[r_2(t) = (1 + t)i + t^2j + te^t k, \]

2. Solve the initial value problem

\[r(0) = 0, \quad \frac{dr}{dt}(0) = i + j + k, \quad \frac{d^2r}{dt^2} = t^2i + tj + k \]

3. Find the arc length

\[r(t) = t^2i + 2tj + (\ln t)k, \quad 1 \leq t \leq e^2. \]

4. Convert to Cartesian equation

\[r = 4 \tan \theta \sec \theta \]

5. Find the area of the region shared by the circles \(r = 2 \sin \theta \) and \(r = 2 \cos \theta \).
6. Find the center and radius of the sphere

\[x^2 + y^2 + z^2 + 6x - 8y + 4z + 4 = 0. \]

7. Find the equation for the plane through \((1, 1, -1), (2, 0, 2)\) and \((0, -2, 1)\).

8. Describe the surfaces.
 - (a) \(x^2 + 4y^2 + 9z^2 = 1 \)
 - (b) \(y^2 = -4x \)
 - (c) \(y^2 + x^2 = z^2 \)
 - (d) \(x^2 + y^2 - z^2 = -1 \)
 - (e) \(x = yz \)

9. Find the equation of tangent line at time \(t = \sqrt{3} \).

\[\mathbf{r}(t) = (\ln(t^2 + 1))\mathbf{i} + (\tan\(^{-1}\) t)\mathbf{j} + (\sqrt{t^2 + 1})\mathbf{k} \]

10. Let \(C \) be the intersection of \(x^2 + y^2 = 16 \) and \(x + y + z = 5 \). Find the curvature at \((0, 4, 1)\).