1. If $y=\left(x^{2}-1\right)(2 x+1)^{2}$, then $\frac{d y}{d x}=2 \chi(2 x+1)^{2}+\left(x^{2}-1\right) 2(2 x+1) \cdot 2$
A. $2(2 x+1)\left(3 x^{2}+x-1\right)$
B. $8 x(2 x+1)$

$$
\begin{aligned}
& =2(2 x+1)\left[x(2 x+1)+2\left(x^{2}-1\right)\right] \\
& =2(2 x+1)\left[2 x^{2}+x+2 x^{2}-2\right] \\
& =2(2 x+1)\left[4 x^{2}+x-2\right]
\end{aligned}
$$

C. $2(2 x+1)(x+2)$
D. $2(2 x+1)\left(4 x^{2}+x-2\right)$
E. $(2 x+1)\left(10 x^{2}-4\right)$
2. If $y=\sqrt{\sin 33 x}$, then $y=\frac{1}{2}(\sin 3 x)^{-1 / 2} \cdot(\cos 3 x) \cdot 3$
A. $\frac{1}{2 \sqrt{\sin 3 x}}$
B. $3 \sqrt{\cos 3 x}$
(C. $\frac{3 \cos 3 x}{2 \sqrt{\sin 3 x}}$

$$
=\frac{3 \cos 3 x}{2 \sqrt{\sin 3 x}}
$$

D. $\frac{3}{2} \sqrt{\sin 3 x \cos 3 x}$
E. $\frac{3}{2 \sqrt{\cos 3 x}}$
3. Find the slope of the tangent line to the curve
4. Suppose $g(e)=4$ and $g^{\prime}(e)=2$. If $y=x^{g(x)}$, then what is y^{\prime} at $x=e$?
A. $\frac{4}{e}+2 e^{4}$

$$
\text { E. } \frac{4}{e}
$$

$$
\begin{gathered}
\ln y=\ln x^{g(x)}=g(x) \ln x \\
\frac{1}{y} \frac{d y}{d x}=g^{\prime}(x) \ln x+g(x) \cdot \frac{1}{x} \\
\frac{d y}{d x}=x^{g(x)}\left[g^{\prime}(x) \ln x+g(x) \cdot \frac{1}{x}\right] \\
\frac{d y}{d x}=e^{g(e)}\left[g^{\prime}(e) \ln e+g(e) \cdot \frac{1}{e}\right] \\
=e^{4}\left[2 \cdot 1+4 \cdot \frac{1}{e}\right]=2 e^{4}+4 e^{3}
\end{gathered}
$$

C. $8 e^{3}$
D. $2 e^{4}+4 e^{3}$

$$
\text { At } x=e: \frac{d x}{d x}=e^{g(e)}\left[g^{\prime}(e) \ln e+g(e) \cdot \frac{1}{e}\right]
$$

$$
\begin{aligned}
& \sin (x+y)=x y \\
& \text { at the point }(0,0) \text {. } \\
& \text { A. } 0 \\
& \text { B. } 1 \\
& \text { C. }-1 \\
& \text { D. } \frac{1}{2} \\
& \text { E. It does not exist. } \\
& \frac{d}{d x} \sin (x+y)=\frac{d}{d x}(x y) \\
& \cos (x+y) \cdot\left[1+\frac{d y}{d x}\right]=1 \cdot y+x \frac{d y}{d x} \\
& \frac{d y}{d x}[\cos (x+y)-x]=y-\cos (x+y) \\
& \frac{d y}{d x}=\frac{y-\operatorname{Cos}(x+y)}{\operatorname{Cos}(x+y)-x}=\frac{0-\operatorname{Cos} 0}{(\operatorname{Cos} 0)-0}=\frac{-1}{1}=-1 \\
& \text { at }(0,0) \text {. }
\end{aligned}
$$

5. A certain bacteria culture grows at a rate proportional to its size and has a doubling time of two hours. How long does it take for the population to triple (i.e. grow to three times its initial size)?

$$
P=P_{0} e^{k t} \quad D=\text { doubling time }=2
$$

A. 3 hours
B. $2 \ln \left(\frac{3}{2}\right)$ hours

$$
\begin{aligned}
& 2 P_{0}=P_{0} e^{k D} \\
& 3 P_{0}=P_{0} e^{\frac{\ln 2}{2} \cdot t}
\end{aligned}
$$

$$
2=e^{k D} \quad \ln 2=K D=k \cdot 2
$$

C. $\frac{3 \ln 2}{\ln 3}$ hours
D. $\frac{3}{2} \ln 2$ hours
(E. $\frac{2 \ln 3}{\ln 2}$ hours

$$
\begin{aligned}
\ln 3 & =\frac{\ln 2}{2} \cdot t, \\
t & =\frac{2 \operatorname{Ln} 3}{\operatorname{Ln} 2}
\end{aligned}
$$

Ptriples when
6. If $f(x)=\frac{x}{x+1}$, then $f^{\prime \prime}(1)=$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1 \cdot(x+1)-1 \cdot x}{(x+1)^{2}}=\frac{1}{(x+1)^{2}} \\
& f^{\prime \prime}(x)=-2(x+1)^{-3} \cdot 1=\frac{-2}{(x+1)^{3}} \\
& f^{\prime \prime}(1)=\frac{-2}{2^{3}}=\frac{-1}{2^{2}}=\frac{-1}{4}
\end{aligned}
$$

A. 0
B. 1
C. -1
D. $\frac{1}{4}$
(E.) $-\frac{1}{4}$

$$
(\operatorname{Ln} 1=0)
$$

7. If $f(x)=x^{2} e^{2 x} \ln x$, then $f^{\prime}(1)=$
A. e^{2}
B. $2 e^{2}$
C. $4 e^{2}$
D. $2+2 e^{2}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=2 x e^{2 x} \ln x+x^{2} 2 e^{2 x} \ln x+x^{2} e^{2 x} \cdot \frac{1}{x} \\
& f^{\prime}(1)=21 \cdot e^{2} \cdot 0+1^{2} \cdot 2 e^{2} \cdot 0+1^{2} \cdot e^{2} \cdot \frac{1}{1}
\end{aligned}
$$

E. $2+2 e^{2}+e$

$$
=0+0+e^{2}
$$

8. If $0<x<\frac{1}{2}$, then $\sec (\underbrace{\sin ^{-1} 2 x})=$
(A.) $\frac{1}{\sqrt{1-4 x^{2}}}$
B. $\frac{1}{\sqrt{1+4 x^{2}}}$

C. $\sqrt{1+4 x^{2}}$
D. $\frac{2 x}{\sqrt{1-4 x^{2}}}$

$$
\sec \theta=\frac{1}{\sqrt{1-4 x^{2}}}
$$

E. $\frac{\sqrt{1-4 x^{2}}}{2 x}$

$$
\text { or } \quad \sec \theta=\frac{1}{\cos \theta}=\frac{1}{\sqrt{1-\sin ^{2} \theta}}=\frac{1}{\sqrt{1-(2 x)^{2}}}
$$

9. Eavitact ing $\frac{\sin 2 x}{2(2+4 \sin x)^{2}} \cdot 2 \frac{\sin 2 x}{2 x} \cdot \frac{1}{(2+\sin x)^{4}}$
A. $\frac{1}{16}$
(B.) $\frac{1}{8}$
C. $\frac{1}{2}$
D. 2
E. ∞

$$
\text { as } x \rightarrow 0
$$

$$
2 \cdot 1
$$

$$
=\frac{2}{2^{4}}=\frac{1}{2^{3}}=\frac{1}{8}
$$

10. If $y=(\cos x)^{4}$, what is $\frac{d y}{d x}$ when $x=\frac{4 \pi}{3}$?
A. $\frac{-3 \sqrt{3}}{4}$
(B.) $\frac{-\sqrt{3}}{4}$

$$
\frac{d y}{d x}=4(\cos x)^{3}(-\sin x)
$$

C. $\frac{1}{4}$
D. $\frac{\sqrt{3}}{4}$
E. $\frac{3 \sqrt{3}}{4}$

$$
\begin{aligned}
& \text { at } x=\frac{4 \pi}{3}= \\
& \begin{aligned}
\frac{d y}{d x} & =4\left(-\frac{1}{2}\right)^{3}\left(-\left(-\frac{\sqrt{3}}{2}\right)\right) \\
& =-\frac{4}{2^{3}} \cdot \frac{\sqrt{3}}{2}=-\frac{\sqrt{3}}{4}
\end{aligned}
\end{aligned}
$$

11. A ball is thrown vertically upward at a velocity of $10 \mathrm{ft} / \mathrm{sec}$ from a point 5 ft above the surface of an alien planet. Its height (in feet) after t seconds is

$$
s(t)=5+10 t-40 t^{2}
$$

Which of the following statements are true?
I. The ball is slowing down when $0<t<1 / 2$.
II. The ball returns to the surface with a speed of $30 \mathrm{ft} / \mathrm{sec}$.
III. The acceleration is a constant $-80 \mathrm{ft} / \mathrm{sec}^{2}$.
A. Only one of the statements is true.

$$
\begin{aligned}
& s^{\prime}(t)=10-80 t \\
& s^{\prime \prime}(t)=-80 \text { III true. }
\end{aligned}
$$

B. I and II
C. I and III
D. II and III
E. All three statements are true. Ball hits: $5+10 t-40 t^{2}=0$ Ball peaks when $s^{\prime}(t)=0$

$$
\begin{gathered}
10-80 t=0 \\
t=1 / 8
\end{gathered}
$$

Slows down $0<t<1 / 8$,
but speeds up $1 / 8<t<\frac{1}{2}$. I false.

$$
\begin{gathered}
1+2 t-8 t^{2}=0 \\
(1+4 t)(1-2 t)=0 \\
t=-\frac{1}{4}, \frac{1}{2}
\end{gathered}
$$

$$
s^{\prime}\left(\frac{1}{2}\right)=10-80 \cdot \frac{1}{2}=-30
$$

so speed $=30$. II true
12. The line tangent to the curve $y=\frac{1}{x^{2}}$ at $(1,1)$ crosses the x-axis at $x=$
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. 2
D. $\frac{5}{2}$
E. 4

$$
\frac{d y}{d x}=-2 x^{-3}=-2 \cdot 1^{-3}=-2 \text { when } x=1 \text {. }
$$

$$
\text { Tangent line } \frac{y-1}{x-1}=-2, y=1-2(x-1)
$$

Crosses when $1-2(x-1)=0$

$$
\begin{gathered}
(x-1)=\frac{1}{2} \\
x=\frac{3}{2}
\end{gathered}
$$

