1. A cylindrical tank with radius 2 in and height 12 in is being filled with water at a rate of 8 $\mathrm{in}^{3} / \mathrm{min}$. How fast is the height of the water increasing when $h<12$ in? Hint: $V=\pi r^{2} h$
$\begin{aligned} & \text { A. } 32 \pi \mathrm{in} / \mathrm{min} \\ & \text { B. } 6 \pi \mathrm{in} / \mathrm{min} \\ & \text { C. } 48 \pi \mathrm{in} / \mathrm{min}\end{aligned} \quad 8=\frac{d V}{d t}=\pi \cdot \alpha^{2} \frac{d h}{d t}$
(D. $\frac{2}{\pi} \mathrm{in} / \mathrm{min}$
E. $\frac{1}{6 \pi} \mathrm{in} / \mathrm{min}$
$\frac{d h}{d t}=\frac{8}{\pi \cdot 2^{2}}=\frac{2}{\pi}$
2. Which of the following is the graph of $y=\frac{x^{3}}{x^{3}+1}$?

3. Suppose z denotes the length of the hypotenuse of a right triangle, and that θ is an acute angle in the triangle whose opposite side has a fixed length of 10 cm . If $\theta=\frac{\pi}{6}$, then $z=20 \mathrm{~cm}$. Use differentials to find $d z$, the approximate change in z, if $d \theta=-0.05$
radians.
A. $1 / 10 \mathrm{~cm}$
B. $\sqrt{3} \mathrm{~cm}$
C. $\sqrt{3} / 2 \mathrm{~cm}$
D. $1 / 2 \mathrm{~cm}$
E. $1 / 3 \mathrm{~cm}$

$$
\sin \theta=\frac{10}{z}
$$

$$
d z=\frac{d z}{d \theta} \cdot d \theta=\left(\frac{-10}{(\sin \theta)^{2}} \cdot \cos \theta\right) d \theta
$$

$$
\begin{aligned}
d z & =\left(\frac{-10}{(1 / 2)^{2}} \cdot \frac{\sqrt{3}}{2}\right)(-0.05) \\
& =\sqrt{3}(20) \cdot \underbrace{(.05)}_{1 / 20}=\sqrt{3}
\end{aligned}
$$

4. Suppose $f(x)=\sqrt{3} \sin x+\cos x$. If M is the absolute maximum of f on the interval $[0, \pi]$, and m is the absolute minimum value on the same interval, what is the sum $M+m$?
A. 0

$$
f^{\prime}(x)=\sqrt{3} \cos x-\sin x=0 \quad \frac{\sin x}{\cos x}=\sqrt{3}
$$

B. $\sqrt{3}-1$
(C.) 1
D. 2

$$
\operatorname{Tan} x=\sqrt{3}
$$

E. 3

$$
\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}
$$

$$
\cos \frac{\pi}{3}=\frac{1}{2}
$$

$$
x=\frac{\pi}{3}
$$

x	$f(x)=\sqrt{3} \sin x+\cos x$
0	$\sqrt{3} \cdot 0+1=1$
$\frac{\pi}{3}$	$\sqrt{3} \cdot \frac{\sqrt{3}}{2}+\frac{1}{2}=2 \longleftarrow M$
π	$\sqrt{3} \cdot 0-1=-1 \longleftarrow{ }^{4} m$

crt. \#
5. Which of these statements describes the graph of $y=e^{2 x}+e^{-x}$?
A. One local maximum and no inflection points
B. One local minimum and no inflection points

$$
y^{\prime}=2 e^{2 x}-e^{-x}=0
$$

C. One local minimum and one inflection point
D. One local maximum and one inflection point

$$
2 e^{2 x}=e^{-x}
$$

E. None of the above

$$
2=e^{-3 x}
$$

$$
\begin{aligned}
& y^{\prime \prime}=4 e^{2 x}+e^{-x} \text { always }>0 \\
& \text { No inflection pts. }
\end{aligned}
$$

$$
\ln 2=-3 x
$$

$$
\begin{aligned}
& x=-\frac{1}{3} \ln 2 \\
& \text { crt. } \#
\end{aligned}
$$

$$
y^{\prime \prime}\left(-\frac{1}{3} \ln 2\right)>0 \text { : } 2^{n d} \text { Der. Test } \Rightarrow \text { local min }
$$

6. At noon, ship A is 20 miles west of ship B. Ship A is sailing north at 6 miles $/ \mathrm{hr}$ and ship B is sailing east at 4 miles $/ \mathrm{hr}$. How fast is the distance between the ships changing at 5:00 PM?
A. 10 miles $/ \mathrm{hr}$
B. $2 \sqrt{13} \mathrm{miles} / \mathrm{hr}$
C. $\frac{34}{5}$ miles $/ \mathrm{hr}$

$$
\stackrel{A}{k} \stackrel{20}{\longrightarrow}{ }_{B} \longrightarrow 4
$$

D. $\frac{132}{\sqrt{30}} \mathrm{miles} / \mathrm{hr}$
E. 5 miles $/ \mathrm{hr}$

$$
A_{20}^{A} \underbrace{z}_{y} B
$$

$$
\begin{aligned}
& x^{2}+(20+y)^{2}=z^{2} \\
& 2 x \frac{d x}{d t}+2(20+y) \frac{d y}{d t}=2 z \frac{d z}{d t} \quad \frac{d y}{d t}=4 \\
& \text { At 5:00: } \frac{d z}{d t}=\frac{x \cdot \frac{d x}{d t}+(y+20) \frac{d y}{d t}}{z}=\frac{30 \cdot 6+(20+20) \cdot 4}{50} \\
& \\
& 5=\frac{180+160}{50}=\frac{340}{50} \mathrm{mph}
\end{aligned}
$$

$$
6 \pi
$$

$$
\frac{d x}{d t}=6
$$

7. The graph of f^{\prime}, the derivative of f, is pictured below:

Which of the following statements are true?
I. f has a local minimum at $x=3$.
\checkmark II. f is concave up on the interval $(1,2)$. $\sqrt{ }$ III. f is increasing on the interval $(0,3)$.
A. Only one of the statements is true.
B. I and II
(C. II and III
D. I and III
E. All three statements are true.
8. $\lim _{x \rightarrow 0} \frac{1-\cos 4 x}{x^{2}} \frac{L^{L} H}{\frac{0}{0}}=\lim _{x \rightarrow 0} \frac{-(-\sin 4 x) \cdot 4}{2 x}=$
B. ∞
C. 4
(D.) 8
E. 16

$$
=\lim _{x \rightarrow 0} \frac{(\operatorname{Cos} 4 x) \cdot 4 \cdot 4}{2}=\frac{(\operatorname{Cos} 0) \cdot 16}{2}=8
$$

9. $\lim _{x \rightarrow 0^{+}}(1+\sin (x))^{1 / x}=$

$$
y=(1+\sin x)^{1 / x}
$$

A. 1

$$
\ln y=\frac{1}{x} \cdot \ln (1+\sin x)
$$

$\begin{array}{ll}\begin{array}{l}\text { B. } \ln 2 \\ \text { C. } 0 \\ \text { D. } \infty \\ \text { (E) } e\end{array} & \lim _{x \rightarrow 0^{+}} \operatorname{Ln} y=\lim _{x \rightarrow 0+} \frac{\ln (1+\sin x)}{x}=\frac{0}{0}\end{array}$

$$
=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{1+\sin x} \cdot \cos x}{1}=\frac{\frac{1}{1+0^{+}}}{1}=1
$$

So $y=e^{\ln y} \rightarrow e^{1}$ as $x \rightarrow 0^{+}$
10. If you use the linear approximation of $f(x)=x^{100}$ at $a=100$ to find an approximate value of 99^{100}, the approximate value found is
(A) 0
B. 100^{99}
C. 99^{99}

$$
\begin{array}{ll}
f(x) \approx f(a)+f^{\prime}(a)(x-a) \\
x^{100} \approx 100^{100}+100 \cdot 100^{99}(x-100) \\
\imath_{\text {let }} x=99
\end{array}\left\{\begin{array} { l }
{ f (x) = x ^ { 1 0 0 } } \\
{ f ^ { \prime } (x) = 1 0 0 x ^ { 9 9 } }
\end{array} \quad \left\{\begin{array}{l}
f(100)=1000^{100} \\
f^{\prime}(100)=100 \cdot 100^{99}
\end{array}\right.\right.
$$

D. $100^{100}-99$
E. $100^{100}-100$

$$
99^{100} \approx 100^{100}+100 \cdot 100^{99}(99-100)
$$

$$
=100^{100}+100^{100}(-1)=0
$$

11. If $f(5)=6$ and the derivative of f is always less than or equal to 10 , what is the largest value $f(10)$ could take?
A. 50
(B. 56
C. 16
D. 44
E. 66

$$
\frac{f(10)-f(5)}{10-5}=f^{\prime}(c) \quad c \in(5,10) \text {, MUT }
$$

$$
\frac{f(10)-6}{5} \leqslant 10
$$

$$
f(10)-6 \leq 50
$$

$$
f(10) \leq 56
$$

12. The minimum value of $x^{3}-3 x+9$ on the interval $[-3,2]$ is
(A.) -9
B. 7

$$
f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)=0
$$

C. 11
D. -1
E. 3

