MATH 162 - SPRING 2004 - THIRD EXAM SOLUTIONS

Useful formulas:
Arc length

$$
L=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Area of a surface of revolution

$$
S=\int_{a}^{b} 2 \pi y(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Some power series:

$$
\begin{gathered}
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad \text { provided } \quad|x|<1
\end{gathered}
$$

1) Find which series equals the definite integral $\int_{0}^{1} \sin \left(x^{2}\right) d x$
A) $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+2)!}$
B) $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+3)!}$
C) $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!(4 n+3)}$
D) $\sum_{n=0}^{\infty}(-1)^{n-1} \frac{1}{(2 n+5!}$
E) $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!(4 n+2)}$

Solution: Using the formula given above for the Maclaurin series of $\sin x$, but with x replaced by x^{2}, we have

$$
\sin \left(x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!}
$$

Therefore

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} \frac{x^{4 n+2}}{(2 n+1)!} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(4 n+3)(2 n+1)!}
$$

The correct answer is C.
2) The power series expansion of $\frac{1}{(1+x)^{2}}$ is
A) $\sum_{n=0}^{\infty}(-1)^{n} x^{n}$
B) $\sum_{n=0}^{\infty}(-1)^{n} n x^{n-1}$
C) $\sum_{n=0}^{\infty}(-1)^{n-1} n x^{n-1}$
D) $\sum_{n=0}^{\infty}(-1)^{n-1} x^{n}$
E) $\sum_{n=0}^{\infty} x^{n}$

Solution: We know that

$$
\frac{1}{(1+x)^{2}}=-\frac{d}{d x}\left(\frac{1}{1+x}\right)
$$

and by the formula given above we have

$$
\frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

Therefore

$$
\frac{1}{(1+x)^{2}}=-\frac{d}{d x}\left(\frac{1}{1+x}\right)=\frac{d}{d x} \sum_{n=0}^{\infty}(-1)^{n} x^{n}=\sum_{n=0}^{\infty} n(-1)^{n} x^{n-1}
$$

Notice that the term corresponding to $n=0$ is zero. One could also state that

$$
\frac{1}{(1+x)^{2}}=\sum_{n=1}^{\infty} n(-1)^{n} x^{n-1}
$$

The correct answer is B.
3) If $(1+x)^{1 / 3}=c_{1}+c_{2} x+c_{3} x^{2}+\ldots$ then c_{3} is equal to
A) $\frac{1}{3}$
B) $\frac{1}{5}$
C) $\frac{1}{9}$
D) $\frac{1}{12}$
E) $-\frac{1}{9}$

Solution: The binomial theorem says that for any k real

$$
(1+x)^{k}=\sum_{n=0}^{\infty} \frac{k(k-1)(k-2) \ldots(k-n+1)}{n!} x^{n} .
$$

So the term in x^{2} is $\frac{k(k-1)}{2}$. In this case $k=\frac{1}{3}$ so $c_{3}=\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{2}=-\frac{1}{9}$. The correct answer is E .
4) The MacLaurin series of $x \cos (2 x)$ is
A) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n)!}$
B) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n+1} x^{2 n+1}}{(2 n)!}$
C) $\sum_{n=0}^{\infty} \frac{(-1)^{n} n^{n} x^{2 n}}{(2 n)!}$
D) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n+1} x^{2 n+1}}{(2 n)!}$
E) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{2 n+1}}{(2 n)!}$

Solution: Using the formula provided above for the MacLaurin series of $\cos x$, but with x replaced by $2 x$ we have

$$
\cos 2 x=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2)^{2 n} x^{2 n}}{(2 n)!}
$$

Multiplying this by x gives

$$
x \cos 2 x=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2)^{2 n} x^{2 n+1}}{(2 n)!}
$$

The correct answer is should have been C, however, as you can see, due to a typo the question had no soution. Everyone was given 10 points for this question.
5) The Taylor polynomial $T_{2}(x)$ for $f(x)=\sin x$ at $a=\frac{\pi}{3}$ is
A) $\frac{\sqrt{3}}{2}+\frac{1}{2}\left(x-\frac{\pi}{3}\right)-\frac{\sqrt{3}}{4}\left(x-\frac{\pi}{3}\right)^{2}$
B) $\frac{\sqrt{3}}{2}+\frac{1}{2}\left(x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{4}\left(x-\frac{\pi}{3}\right)^{2}$
C) $\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2}$
D) $\frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)+\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2}$
E) $\left(x-\frac{\pi}{3}\right)-\frac{1}{6}\left(x-\frac{\pi}{3}\right)^{2}$

Solution: We know that the Taylor polynomial of degree n of a function f at a point $x=a$ is

$$
T_{n}(x)=\sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!}(x-a)^{j}
$$

Here we have $f(x)=\sin x, n=2$ and $a=\frac{\pi}{3}$.

$$
f(x)=\sin x, \quad f^{\prime}(x)=\cos x, \quad f^{\prime \prime}(x)=-\sin x
$$

Evaluating these at $x=\frac{\pi}{3}$ gives

$$
f\left(\frac{\pi}{3}\right)=\sin \frac{\pi}{3}=\sqrt{3} 2, \quad f^{\prime}\left(\frac{\pi}{3}\right)=\cos \frac{\pi}{3}=\frac{1}{2}, \quad f^{\prime \prime}\left(\frac{\pi}{3}\right)=-\sin \frac{\pi}{3}=-\sqrt{3} 2 .
$$

So

$$
T_{2}(x)=\frac{\sqrt{3}}{2}+\frac{1}{2}\left(x-\frac{\pi}{3}\right)-\frac{\sqrt{3}}{4}\left(x-\frac{\pi}{3}\right)^{2} .
$$

The correct answer is A.
6) The slope of the tangent line to the graph of the curve $x=1+t^{2}, y=t \ln t$ at $t=2$ is
A) $\frac{1}{4}$
B) $\frac{\ln 2}{4}$
C) $\frac{4}{\ln 2}$
D) $\frac{1+\ln 2}{4}$
E) $\frac{4}{1+\ln 2}$

Solution: We know that

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\ln t+1}{2 t}
$$

When $t=2$ we have

$$
\frac{d y}{d x}=\frac{1+\ln 2}{4}
$$

The correct answer is D .
7) The length of the curve $x=e^{t}+e^{-t}, y=2 t, 0 \leq t \leq 1$ is
A) $e+e^{-1}-2$
B) $e-e^{-1}$
C) $e+e^{-1}$
D) $e+e^{-1}-2$
E) $\frac{1}{2}\left(e+e^{-1}\right)$

Solution: First we find that

$$
x^{\prime}(t)=e^{t}-e^{-t}, \quad y^{\prime}(t)=2
$$

So

$$
\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}=\left(e^{t}+e^{-t}\right)^{2}+4=e^{2 t}-2+e^{2 t}+4=e^{2 t}+e^{-2 t}+2=\left(e^{t}+e^{-t}\right)^{2} .
$$

So

$$
L=\int_{0}^{1}\left(e^{t}+e^{-t}\right) d t=e^{t}-\left.e^{-t}\right|_{0} ^{1}=e-e^{-1}
$$

The correct answer is C.
8) The curve $x=\cos ^{3} \theta, y=\sin ^{3} \theta, 0 \leq \theta \leq \frac{\pi}{2}$ is rotated about the x -axis to generate a surface. Its area is given by
A) $\int_{0}^{\frac{\pi}{2}} 6 \pi \cos \theta \sin \theta d \theta$
B) $\int_{0}^{\frac{\pi}{2}} 6 \pi \cos ^{2} \theta \sin ^{2} \theta d \theta$
C) $\int_{0}^{\frac{\pi}{2}} 6 \pi \cos ^{2} \theta \sin ^{3} \theta d \theta$
D) $\int_{0}^{\frac{\pi}{2}} 6 \pi \cos \theta \sin ^{4} \theta d \theta$
E) $\int_{0}^{\frac{\pi}{2}} 6 \pi \cos ^{2} \theta \sin ^{4} \theta d \theta$

Solution: We find that

$$
x^{\prime}(\theta)=-3 \cos ^{2} \theta \sin \theta, \quad y^{\prime}(\theta)=3 \sin ^{2} \theta \cos \theta
$$

So
$\left(x^{\prime}(\theta)\right)^{2}+\left(y^{\prime}(\theta)\right)^{2}=9 \cos ^{4} \theta \sin ^{2} \theta+9 \sin ^{4} \theta \cos ^{2} \theta=9 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=9 \sin ^{2} \theta \cos ^{2} \theta$.
Therefore

$$
\sqrt{\left(x^{\prime}(\theta)\right)^{2}+\left(y^{\prime}(\theta)\right)^{2}}=3 \cos \theta \sin \theta
$$

So finally

$$
A=2 \pi \int_{0}^{\frac{\pi}{2}} y(\theta) \sqrt{\left(x^{\prime}(\theta)\right)^{2}+\left(y^{\prime}(\theta)\right)^{2}} d \theta=6 \pi \int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta \cos \theta d \theta
$$

The correct answer is D .
9) The cartesian coordinates of a point are $(-2 \sqrt{3}, 2)$. Find its polar coordinates
A) $\left(4, \frac{2 \pi}{3}\right)$
B) $\left(4, \frac{5 \pi}{6}\right)$
C) $\left(2, \frac{2 \pi}{3}\right)$
D) $\left(2, \frac{5 \pi}{6}\right)$
E) $\left(4,-\frac{\pi}{3}\right)$

Solution: We know that $x=r \cos \theta$ and $y=r \sin \theta$ where $r^{2}=x^{2}+y^{2}$. So $r^{2}=$
$(-2 \sqrt{3})^{2}+4=16$. Then $r=4$. On the other hand

$$
\cos \theta=\frac{x}{r}=-\frac{2 \sqrt{3}}{4}=-\frac{\sqrt{3}}{2}, \quad \sin \theta=\frac{y}{r}=\frac{1}{2} .
$$

The angle must be on the second quadrant and so $\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$. The correct answer is B.
10) The polar equation of the circle of radius 1 centered at $(0,-1)$ is
A) $r=2 \cos \theta$
B) $r=2 \sin \theta$
C) $r=-\sin \theta$
D) $r=-2 \sin \theta$
E) $r=-2 \cos \theta$

Solution: The circle centered at $(0,-1)$ with radius 1 has equation $x^{2}+(y+1)^{2}=1$. Then $x^{2}+y^{2}+2 y+1=1$ and thus $x^{2}+y^{2}+2 y=0$. Since $x^{2}+y^{2}=r^{2}$ and $y=r \sin \theta$, this equation reduces to $r^{2}+2 r \sin \theta=0$ or $r=-2 \sin \theta$.

