1. Find a vector function \(\mathbf{r}(t) \) that traces the line which contains the point \((3, 4, 0)\) and is perpendicular to the plane \(z = 2x - 5y + 7 \).

- A. \(\mathbf{r}(t) = (2 + 3t, -5 + 4t, 1) \)
- B. \(\mathbf{r}(t) = (3 - t, 2 + 4t, -t) \)
- C. \(\mathbf{r}(t) = (1 + t, 2 - 3t, 7 + t) \)
- D. \(\mathbf{r}(t) = (3 + t, 4 + 5t, t) \)
- E. \(\mathbf{r}(t) = (3 + 2t, 4 - 5t, -t) \)

The plane is \(2x - 5y - 2z + 7 = 0 \)

The line is \((3, 4, 0) + t(n_1, n_2, n_3) \)

And \((n_1, n_2, n_3) = (2, -5, -1)\)

from the equation of the plane.
2. The approximate change of \(z = \sqrt{1 + x + y^2} \) as \((x, y)\) changes from \((2, 1)\) to \((1.9, 1.2)\) is

\[
\frac{\partial z}{\partial x} \bigg|_{(2,1)} = \frac{1}{2 \sqrt{1 + x + y^2}} \bigg|_{x=2, y=1} = \frac{1}{4}
\]

\[
\frac{\partial z}{\partial y} \bigg|_{(2,1)} = \frac{2y}{2 \sqrt{1 + x + y^2}} \bigg|_{(2,1)} = \frac{1}{2}
\]

A. \(\frac{1}{10} \)
B. \(\frac{1}{\sqrt{10}} \)
C. \(\frac{3}{40} \)
D. \(-\frac{1}{40} \)
E. \(-\frac{1}{20} \)

Answer: \(\frac{1}{4} \cdot (1.9 - 2) + \frac{1}{2} \cdot (1, 2 - 1) = \)

\[-\frac{1}{4} + \frac{4}{4} = \frac{3}{4} \]
3. The length of the path traced out by \(r(t) = 2t^{3/2} \mathbf{i} + \cos 2t \mathbf{j} + \sin 2t \mathbf{k} \) over the interval \(0 \leq t \leq 2 \) is

A. \(\int_0^2 \sqrt{4t^3 + 4} \, dt \)

B. \(\int_0^2 4t^3 + 4 \, dt \)

C. \(\int_0^2 \sqrt{9t + 4} \, dt \)

D. \(\int_0^2 9t + 4 \, dt \)

E. \(\int_0^2 \frac{1}{\sqrt{4t^3 + 4}} \, dt \)

\[
\int_0^2 \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \, dt
\]

\[
= \int_0^2 \sqrt{(3t^{1/2})^2 + (-2\sin 2t)^2 + (2\cos 2t)^2} \, dt
\]

\[
= \int_0^2 \sqrt{9t + 4} \, dt
\]
4. Suppose \(f(7, 8) = 5, f(7.1, 8) = 5.1, f(7, 8.2) = 5.4, \) and \(f(7.1, 8.2) = 5.5. \) The best estimates for \(f_x(7, 8) \) and \(f_y(7, 8) \) based on this data are

A. \(f_x(7, 8) = 2 \) and \(f_y(7, 8) = 1 \)
B. \(f_x(7, 8) = 2 \) and \(f_y(7, 8) = 2 \)
C. \(f_x(7, 8) = 1 \) and \(f_y(7, 8) = 1 \)
D. \(f_x(7, 8) = 1 \) and \(f_y(7, 8) = 2 \)
E. \(f_x(7, 8) = 3 \) and \(f_y(7, 8) = 1 \)

\[
\begin{align*}
\hat{f}_x(7, 8) & \approx \frac{f(7, 1, 8) - f(7, 8)}{0.1} = \frac{0.1}{0.1} = 1 \\
\hat{f}_y(7, 8) & \approx \frac{f(7, 8, 2) - f(7, 8)}{0.2} = \frac{0.2}{0.2} = 2
\end{align*}
\]
5. Find the equation of the tangent plane to \(z = e^{xy} \) at the point \((1,1,e)\)

A. \(z = ex + ey + 1 \)
B. \(z = x + y + e - 2 \)
C. \(z = ex + ey + e \)
D. \(z = ex + ey - e \)
E. \(z = x + y + 1 \)

\[
\frac{\partial z}{\partial x} \bigg|_{(1,1)} = ye^x \bigg|_{(1,1)} = e^1 = e
\]

\[
\frac{\partial z}{\partial y} \bigg|_{(1,1)} = xe^y \bigg|_{(1,1)} = 1 \cdot e^1 = e
\]

Equation

\[p(x,y) = Ax + By + C = ex + ey + C \]

to find \(C \) plug in \(p(1,1) = e \)

so \(e \cdot 1 + e \cdot 1 + C = e \)

\(C = -e \)

Or \(z - z_0 = A(x-x_0) + B(y-y_0) \)

to get \(z = ex + ey - e \)
6. The vector projection of $4j$ onto $4i + 4j$, that is, $\text{proj}_{4i+4j} 4j$, equals

A. $i + j$
B. $2i + 2j$
C. $3i + 3j$
D. $4i + 4j$
E. $4j$

The projection is long and points in the direction of $4i + 4j$, i.e., of the unit vector $\frac{i + j}{\sqrt{2}}$.

So, answer is:

$\text{Length of } 4j \times \cos \theta \times \frac{i + j}{\sqrt{2}}$

$= (4) \frac{1}{\sqrt{2}} \times \frac{x^2 + y^2}{\sqrt{2}} = \frac{4}{2} (x + y)$

\boxed{B}
7. Find \(b \) and \(c \) so that \(\mathbf{v} = \langle 4, b, c \rangle \) is parallel to the planes \(x + y + z = 3 \) and \(2x + z = 0 \).

A. \(b = -8, c = 4 \)
B. \(b = 8, c = 4 \)
C. \(b = 12, c = 4 \)
D. \(b = -4, c = -8 \)
E. \(b = 4, c = -8 \)

The easiest way is to note that \(\langle 4, b, c \rangle \) must be perpendicular to both \(\mathbf{i} + \mathbf{j} + \mathbf{k} \), the normal vector for the first plane, and \(2\mathbf{i} + \mathbf{k} \), the normal vector for the second.

So, \[
\left(4\mathbf{i} + b\mathbf{j} + c\mathbf{k} \right) \cdot \left(\mathbf{i} + \mathbf{j} + \mathbf{k} \right) = 0
\]
\[
\left(4\mathbf{i} + b\mathbf{j} + c\mathbf{k} \right) \cdot \left(2\mathbf{i} + \mathbf{k} \right) = 0
\]

\[
\begin{cases}
4 + b + c = 0 \\
4 \cdot 2 + c \cdot 1 = 0
\end{cases}
\]
works only for \(b = 4 \).

\[
\begin{cases}
4 + 4 + c = 0 \\
4 \cdot 2 + c \cdot 1 = 0
\end{cases}
\]

\(c = -8, \text{ and } \)

Alternative, the answer must be parallel to \(\left(\mathbf{i} + \mathbf{j} + \mathbf{k} \right) \times \left(2\mathbf{i} + \mathbf{k} \right) \).
8. The graph of $x^2 - 2y^2 + 3z^2 - 4 = 0$ is

A. A hyperboloid of one sheet which does not intersect the x axis
B. A hyperboloid of one sheet which does not intersect the y axis
C. A hyperboloid of one sheet which does not intersect the z axis
D. A hyperboloid of two sheets which does intersect the y axis
E. A hyperboloid of two sheets which does intersect the z axis

The sketch is the best way to see this.

$x^2 + 3y^2 = 4 + 2y$
9. Let \(\mathbf{r}(0) = i + j, \mathbf{v}(0) = 2i + 3j, a(t) = e^{2t}j, \) where \(\mathbf{r}''(t) = a(t) \) and \(\mathbf{r}'(t) = \mathbf{v}(t). \) Find \(\mathbf{r}(1). \)

\[
\mathbf{v}(t) = \int_{0}^{t} a(\omega) \, d\omega + \mathbf{v}(0) \\
= \left[\int_{0}^{t} e^{2\omega} \, d\omega \right] \mathbf{i} + \left[\int_{0}^{t} \frac{1}{4} e^{2\omega} \, d\omega \right] \mathbf{j} + 2\mathbf{i} + 3\mathbf{j} \\
= 2\mathbf{i} + \left[\frac{1}{2} e^{2\omega} \bigg|_{0}^{t} \right] + 3 \mathbf{j} \\
= 2\mathbf{i} + \left[\frac{1}{2} e^{2t} + \frac{3}{2} \right] \mathbf{j} \\
= 2\mathbf{i} + \left[\frac{1}{2} e^{2t} + 2\frac{1}{2} \right] \mathbf{j}
\]

\[
\mathbf{r}(t) = \mathbf{r}(0) + \int_{0}^{t} \mathbf{v}(\omega) \, d\omega = \\
= \mathbf{i} + \mathbf{j} + \left[\int_{0}^{t} 2 \, d\omega \right] \mathbf{i} + \left[\int_{0}^{t} \left(\frac{1}{2} e^{2\omega} + 2\frac{1}{2} \right) \, d\omega \right] \mathbf{j} \\
= \mathbf{i} \left[1 + 2 \right] + \mathbf{j} \left[1 + \left. \frac{1}{4} e^{2\omega} \right|_{0}^{t} + 2\frac{1}{2} \left. \right|_{0}^{t} \right] \\
= \mathbf{i} \left[1 + \frac{3}{2} \right] + \mathbf{j} \left[1 + 2\frac{1}{4} + 2\frac{1}{2} \right] \\
\]

Plug in \(t = 1 \) and select D.
10. If E is the region defined by $y > 0, y - x < 0$, and $x^2 + y^2 + z^2 < 4$, then describe E in spherical coordinates

- A. $0 < \rho < 4, 0 < \theta < \frac{\pi}{2}, 0 < \phi < \pi$
- B. $0 < \rho < 2, 0 < \theta < \frac{\pi}{4}, 0 < \phi < \frac{\pi}{2}$
- C. $0 < \rho < 2, \frac{\pi}{4} < \theta < \pi, 0 < \phi < \frac{\pi}{2}$
- D. $0 < \rho < 2, 0 < \theta < \frac{\pi}{2}, 0 < \phi < \frac{\pi}{4}$
- E. $0 < \rho < 2, 0 < \theta < \frac{\pi}{4}, 0 < \phi < \pi$

The set $\{y > 0, y - x < 0\}$ in the $x y$ plane looks like this:

Since $y - x < 0$ is the part of the plane on the $+x$ side of the line $y - x = 0$.

In polar coordinates this is $0 < \theta < \frac{\pi}{4}$.

In 3D, $\{y > 0, y - x < 0\}$ is everything which projects to the region sketched above, a wedge. $x^2 + y^2 + z^2 < 4 = \rho < 2$, the sphere of radius 2 about the origin.

So the region is a wedge out of a sphere with the sharp edge of the wedge along the y-axis from -2 to 2. So every ϕ from 0 to π is the ϕ of a point in the region: (E)
11. The tangent line to the curve traced out by \(\mathbf{r}(t) = (\cos t, \sin t, t) \) at the point \((0, 1, \frac{\pi}{2})\) hits the \(xy\) plane at the point where

\[t \text{ must be } \frac{\pi}{2} \]

A. \(x = 1, \ y = \pi \)
B. \(x = \frac{\pi}{2}, \ y = 1 \)
C. \(x = \pi, \ y = \frac{\pi}{2} \)
D. \(x = -\frac{\pi}{2}, \ y = 1 \)
E. \(x = -1, \ y = \pi/2 \)

\[\mathbf{r}(\frac{\pi}{2}) = (0, 1, \frac{\pi}{2}) \]

To find the line use \(\mathbf{r}(\frac{\pi}{2}) \) as the point and \(\mathbf{r}'(\frac{\pi}{2}) = (-\sin t, \cos t, 1) \) evaluated at \(t = \frac{\pi}{2} \) as a parallel vector.

\((0, 1, \frac{\pi}{2}) + t(-1, 0, 1)\) gives tangent line.

This hits the \(xy\) plane when the \(z\) coordinate is 0, so \(\frac{\pi}{2} + t = 0 \), \(t = -\frac{\pi}{2} \)

The first two coordinates of the answer is \((0, 1, \frac{\pi}{2}) + (-\frac{\pi}{2})(-1, 0, 1) \).

\[x = 0 + (-\frac{\pi}{2}) \cdot (-1) \]
\[y = 1 + (-\frac{\pi}{2}) \cdot 0 \]