PROBLEM OF THE WEEK
Solution of Problem No. 3 (Fall 2000 Series)

Problem: If a given equilateral triangle \(\triangle \) of side \(a \) can be covered by five equilateral triangles of side \(b \), show that \(\triangle \) can be covered by four of side \(b \).

Solution (by Mike Hamburg, Jr. St. Joseph H.S., South Bend)

Suppose \(\triangle \) can be covered by 5 equilateral triangles of side \(b \) (henceforth “\(b \)-triangles”). Then we assert \(a \leq 2b \). For if \(a > 2b \), then the vertices and midpoints of the sides of \(\triangle \) (6 points at all) are mutually separated by \(\frac{1}{2}a > b \). But no 2 points on a \(b \)-triangle are separated by a distance greater than \(b \), hence no \(b \)-triangle can cover more than one of the 6 points.

But if \(a \leq 2b \) then 4 \(b \)-triangles can be arranged to form a \(2b \)-triangle which covers \(\triangle \).

Also solved by:

Undergraduates: Kevin Darkes (Soph. A&AE), Haldun Kufluoglu (Sr. EE), James Lee (Sr. MA/CS), Stevie Schraudner (Jr. CS)

Graduates: Gajath Gunatillake (MA), Chris Lomont (MA)

Faculty & Staff: Steven Landy (Phys. at IUPUI)

Others: Damir Dzhafarov, Jake Foster (Sr. & Soph., resp., Harrison H.S., WL)

There was one incorrect solution.