
PROBLEM OF THE WEEK

Solution of Problem No. 3 (Fall 2005 Series)

Problem: Let f(x, y, z) be a polynomial with real coefficients, of total degree ≤ 2, which

takes on integer values at each of the 8 vertices of the unit cube 0 ≤ x, y, z ≤ 1.

Show that f must take on odd values at an even number of the 8 vertices.

Solution (by the Panel)

Each such polynomial is a linear combination of the monomials

1, x, y, z, xy, yz, xz, x2, y2, z2

with real (but not necessarily integral) coefficients.

We will show first that

(1)
∑

x,y,z∈{0,1}
(−1)x+y+zP (x, y, z) = 0.

Indeed, it is enough to prove (1) for each monomial that has the form xiyjzk with i+j+k ≤
2, i, j, k non–negative integers. In each such monomial at least one of the variables is

missing, i.e., at least one of i, j, k equals 0. Let us say, for example that k = 0. Then we

split the terms in (1), where P = xiyj, in two groups: one with z = 0, and the other one

with z = 1. If we keep x, y fixed, the terms corresponding to z = 0 and z = 1 in (1) cancel

each other. Therefore, all terms in (1) cancel.

Therefore, (1) is true for each monomial, thus it is true for P as well. Next, (1) implies

easily that ∑
x,y,z∈{0,1}

P (x, y, z) is even,

and this yields the statement immediately.

Update on Problem # 2: It was also solved by Miguel Hurtado, grad. student, ECE.
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