Problem: A point P is chosen at random with respect to the uniform distribution in an equilateral triangle T. What is the probability that there is a point Q in T whose distance from P is larger than the altitude of T? (The answer can be found without integration.)

Solution (by the Panel)

Let AOB be the vertices of T, M the midpoint of OB, C the orthocenter of T, and R the intersection of the altitude of AB (say of length h) and the circle with center A and radius AM. The sought probability is

$$p = \frac{6 \text{area} (ORM)}{\frac{1}{4} \sqrt{3}}$$

if 1 is the length of the side of T.

On taking origin at O, positive x-axis along OB, and positive y-axis through O in the direction of MA, the coordinates x, y of Q satisfy

$$y = \frac{x}{3}\sqrt{3}, \quad (x - \frac{1}{2})^2 + (y - \frac{1}{2}\sqrt{3})^2 = \frac{3}{4}.$$

One finds $x = \frac{3}{4} - \frac{1}{4}\sqrt{6}, y = \frac{1}{4}\sqrt{3} - \frac{1}{4}\sqrt{2}$.

Now $|ORM| = |OCM| - |RCM| = |OCM| - (|RAM| - |RAC|)$, where $|OCM| = \frac{1}{24}\sqrt{3}, |RAC| = \frac{1}{2}\frac{1}{3}\sqrt{3}(\frac{1}{2} - x) = \frac{1}{8}\sqrt{2} - \frac{1}{24}\sqrt{3},$

$|RAM| = \frac{h^2}{2} \sin^{-1}\left(\frac{\frac{1}{2} - x}{h}\right) = \frac{3}{8} \sin^{-1}\left(\frac{\frac{1}{2}\sqrt{2} - \frac{1}{6}\sqrt{3}}{h}\right)$.

Hence

$$|ORM| = \frac{1}{24}\sqrt{3} - \frac{3}{8}\sin^{-1}\left(\frac{1}{2}\sqrt{2} - \frac{1}{6}\sqrt{3}\right) + \frac{1}{8}\sqrt{2} - \frac{1}{24}\sqrt{3},$$

$$= \frac{1}{8}\sqrt{2} - \frac{3}{8}\sin^{-1}\left(\frac{1}{2}\sqrt{2} - \frac{1}{6}\sqrt{3}\right),$$

and so

$$p = \sqrt{6} - 3\sqrt{3}\sin^{-1}\left(\frac{1}{2}\sqrt{2} - \frac{1}{6}\sqrt{3}\right) = 0.2067.$$

Also solved by:

Graduates: Michael Igarta (ECE)

Others: Regis J. Serinko (PhD, State Coll., PA)

One incorrect solution was received.