PROBLEM OF THE WEEK
Solution of Problem No. 7 (Spring 2005 Series)

Problem: Let $P(x)$ be a polynomial such that all roots of $P(x)$ are real.

(a) Prove that
\[
\left(\frac{P'(x)}{P(x)} \right)^2 \geq P(x)P''(x) \quad \text{for all real } x.
\]

(b) For what x does an equality hold?

Solution (by Georges Ghosn, Quebec)

The problem is trivial if $\deg P = 0$, so we assume $\deg P \neq 0$. Since all roots of $P(x)$ are real, $P(x)$ can be expressed as:

\[
P(x) = A(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_n)^{m_n} \text{ with } m_i \geq 1, \text{ and } \deg P = m_1 + \cdots + m_n.
\]

(a) This inequality is satisfied if $x = x_i$, so we suppose $x \neq x_i$. Then

\[
\frac{P'(x)}{P(x)} = \sum_{i=1}^{n} \frac{m_i}{x - x_i}, \quad \forall x \in \mathbb{R} \quad (x \neq x_i).
\]

Taking the derivative of both terms of this equality yield to:

\[
\frac{P''(x)P(x) - P'^2(x)}{P^2(x)} = \sum_{i=1}^{n} \frac{-m_i}{(x - x_i)^2}
\]

\[
= \left(\sum_{i=1}^{n} \frac{m_i}{(x - x_i)^2} \right) P^2(x) \geq 0
\]

\[
\Rightarrow P'^2(x) \geq P(x)P''(x) \quad \forall x \in \mathbb{R}.
\]

(b) Since we have from (a),

\[
P'^2(x) - P(x)P''(x) > 0 \quad \forall x \in \mathbb{R} \quad x \neq x_i
\]

and

\[
P'^2(x_i) - P(x_i)P''(x_i) = P'^2(x_i)
\]
The equality holds only for all roots of $P(x)$ of multiplicity equal 2 or higher, or for polynomials of degree zero (constants) for all x.

Also solved by:

Graduates: Ali Butt (ECE), Miguel Hurtado (ECE), Niru Kumari (ME)

Others: Prithwijit De (Ireland), Byungsoo Kim (Seoul Natl. Univ.), Jeff Ledford (Gainesville, GA), A. Plaza (ULPGC, Spain), Arman Sabbaghi (Clay HS, South Bend, IN), Daniel Vacaru (Pitesti, Romania), Gabriel Vrinceanu (Bucharest)