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1 Introduction

Recent advance predictions of Tokachi-oki earthquake, Hokkaido, Japan (September 25,
2003, M8.3) and San Simeon earthquake, CA (December 22, 2003, M6.5) made by the
international group led by Prof. Vladimir Keilis-Borok present a perfect opportunity to
revisit the problem of earthquake prediction and rise specific questions like What is the
progress made recently in short-term earthquake prediction? How reliable is the method
used for the recent predictions? How can the geophysical community join the efforts in
improving existing understanding of premonitory processes?

The SCEC Workshop is targeted first of all at a new prediction recently issued by the
same algorithm for a region in Southern California (see Sect. 3.3). Even though there is
a not negligible chance that this prediction is a false alarm, the odds of having the next
big one within this territory seem to be much higher than random. There is a realistic
(and quite unique) possibility to study the place of a coming earthquake months prior to
its occurrence, paying not too high a price in case if this prediction will turn to be a false
one. It would be very important not to miss the chance to ambush a coming earthquake
by joint efforts using different methods and ideas from the whole geophysical community.

Presented materials are aimed to provide necessary methodological and technical
detail of the ongoing experiment in short-term prediction. They discuss Reverse Detection
of Precursors — the methodology which is the core of the recent advances in short-term
prediction, — give an overview of the advance predictions made so far, and describe tests
of stability of prediction algorithm. The essential techniques and methods of prediction
evaluation and the existing intermediate-term prediction algorithms are described as well.

Disclaimer: The methods and techniques that have led to the recent advance pre-
dictions are based on the experience of some 20 years of broad multidisciplinary research
which merged geodynamics, non-linear dynamics, statistical physics, and pattern recog-
nition. These materials is NOT a comprehensive review NOR a research paper, they
merely a set of technical notes targeted at collecting together what have been done,
and helping to overview the progress made so far. Many important issues are left aside
as well as many questions are not discussed in the full detail required from a scientific
publication.
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2 Short-Term Prediction

Here we describe the general methods and specific techniques that lead to short-term
earthquake prediction as well as provide the detailed information about the recent ad-
vance predictions.

2.1 Formulation of the problem

Commonly known are five major stages of earthquake prediction. The first, background,
stage provides the maps with territorial distribution of maximal possible magnitude and
recurrence time of destructive earthquakes of different magnitude. The four subsequent
stages, fuzzily divided, include the time-prediction; they differ in characteristic time
intervals for which an alarm is declared: long-term stage corresponds to alarms of tens of
years, intermediate-term stage to years, short-term to months or weeks, and immediate
to days or less (see also Sect. A.1, Table 6.) Accordingly, the problem of short-term
prediction is formulated here as follows:

To outline a spatial region within which an earthquake with magnitude
Mlow < M < Mup is expected during the next k months.

Predictions described below use k = 9 months.

2.2 Regions considered

We have considered three regions: California, Japan, and Eastern Mediterranean and
used an appropriate earthquake catalog for each region. The detailed description follows.

2.2.1 Central and Southern California

Catalog: Advanced National Seismic System [2].

Region: Southern California is defined as a rectangle within 31.5oN-36oN, 120oW-
114oW, and Central California defined as the polygon with vertices 41oN, 123oW; 36oN,
117oW; 33oN, 120oW; 38oN, 126oW. The union of Central and Southern California regions
is shown in Fig. 1.

Magnitude: as given in ANSS (one value)

Preprocessing: Aftershocks are removed using the space-time windowing [Aft] with
parameters given in Table1. Note that magnitude of aftershocks in this method is by
definition smaller than the magnitude of the main shock. No other preprocessing.

Target earthquakes: are those with M ≥ 6.4.
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Figure 1: California region. Stars mark large earthquakes, targeted for retrospective
prediction. Dots show background seismicity; aftershocks are excluded.
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2.2.2 Japan

Catalog: Japan Meteorological Agency.

Region: Polygon with vertices 23oN, 135oE; 31oN, 124oE; 50oN, 145oE; 42oN, 156oE,
see Fig. 2

Magnitude: as given in JMA catalog (one value). Note that recently magnitudes were
revised for the entire JMA catalog. The new catalog has not been analyzed.

Preprocessing: Aftershocks are removed using the space-time windowing [Aft] with
parameters given in Table1. No other preprocessing.

Target earthquakes: are those with M ≥ 7.0.

2.2.3 Eastern Mediterranean

Catalog: The catalog of Geophysical Institute of Israel ([3].

Region: Rectangle with vertices 27oN-36oN, 32oE-38oE, see Fig. 3

Magnitude: Maximal magnitude from reported in GII catalog.

Preprocessing: Aftershocks are removed using the space-time windowing [Aft] with
parameters given in Table1. No other preprocessing.

Target earthquakes: are those with M ≥ 6.5.

2.3 Methodology: Reverse Detection of Precursors (RDP)

RDP methodology is based on the concept of self-organization of the lithosphere cul-
minated by a strong earthquake [Aki, 2003; Bird, 1998; Blanter and Schnirman, 1997;
Bowman et al., 1998; Gabrielov et al., 2000; Jin et al., 2003; Keilis-Borok, 1996, 2002;
Keilis-Borok and Soloviev, 2003; Newman et al., 1994; Rundle et al., 2000; Scholz, 1990;
Sornette, 2000; Turcotte, 1997; Zaliapin et al., 2003]. Being a part of geodynamics, this
process is not localized but extends over large time and space, evolving in multiple scales.
Among its various manifestations is the sequence of premonitory seismicity patterns —
the spatio-temporal patterns of seismicity that emerge as a strong earthquake approaches.

The well-known difficulty in working with short-term patterns is that they typically
produce many false alarms (i.e. not all of them are followed by a strong earthquake).
Contrary to intermediate-term prediction, where the rate of false alarms is non-zero yet
acceptable (1 false alarm per 1 correct alarm in the worst cases), the rate of false alarms
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Table 1: Windows for identification of aftershocks

Magnitude Raft, km Taft, hours

M < 2.5 20 60
2.5 ≤ M < 3.0 23 120

3.0 ≤ M < 3.5 26 180

3.5 ≤ M < 4.0 30 360

4.0 ≤ M < 4.5 35 720

4.5 ≤ M < 5.0 40 1440

5.0 ≤ M < 5.5 47 2880

5.5 ≤ M < 6.0 54 5760

6.0 ≤ M < 6.5 61 11520

6.5 ≤ M 70 23040

for short-term premonitory patterns (precursors) is way higher reaching tens of false
alarms per one correct one, and rendering the whole prediction scheme useless. The RDP
methodology is targeted at overcoming this obstacle by distinguishing rare correct short-
term alarms among a large number of false ones. The main idea of RDP is that correct
short-term patterns should be preceded by intermediate-term ones observed within the
same spatial region, while false short-term patterns may happen just randomly. The idea
of this methodology is thus to combine numerous short-term patterns with less frequent
intermediate-term ones.

Technically, the analysis proceeds as follows (Fig. 4.) First, we detect the “candidates”
for the short-term precursors; in our case these are the chains of earthquakes capturing
the rise of an earthquake correlation range (Sect. 2.3.1). Then we check, for each chain,
whether it was preceded by intermediate-term precursors in its close vicinity (Sect. 2.3.2).
If the answer is “yes”, we regard this chain as a precursory one; in prediction it would
start a short-term alarm. If not — the chain is disregarded and alarm is not started.
Thus we consider the short-term patterns (chains) first, although they emerge later.

A notable advantage of reverse analysis is that the chain indicates the narrow area
where an intermediate-term precursor should be looked for. This makes possible to detect
the finely scaled precursors undetectable by the direct analysis.

2.3.1 Short-Term Premonitory Pattern: Chains

The short-term premonitory phenomenon used in our analysis reflects increase in earth-
quake correlation range. The pattern we use here is a generalization of patterns “ROC”
and “Accord” that capture the same phenomenon; these patterns have been found in
modeled seismicity [Gabrielov et al., 2000] and then in observations [Shebalin et al., 2000;
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Table 2: Parameters of chain definition

Region Mmin τ0, days rc, km c k0 l0, km γ0

C California 2.9 30 50 0.35 10 250 0.6

S Califonria 2.9 20 50 0.35 6 175 0.5

Japan 3.6 20 50 0.35 10 350 0.4

E Mediterranian 3.0 40 50 0.35 6 200 0.5

Keilis-Borok et al., 2002]. Qualitatively, this pattern is a dense sequence of medium mag-
nitude earthquake that quickly extends over large distance. We call it pattern “Chain”.

Definition. We call two earthquakes neighbors if they occurred close in time and space
to each other; formally if (i) the distance between their epicenters does not exceed a
threshold r0; and (ii) the time interval between them does not exceed a threshold τ0. A
chain is the sequence of earthquakes connected by the following rule: each earthquake
has at least one neighbor in that sequence. Clearly, an earthquake can not have neighbors
outside the chain it belongs to; thus each pair (r0, t0) corresponds to a division of all the
earthquakes into non-overlapping clusters; we call them chains. To connect in a chain
only the unusually close earthquakes we normalize the threshold r0 as follows:

r0 = rc10
c(m−2.5),

where m is the magnitude of the smaller earthquake in a pair considered. Let k be
the number of earthquakes in a chain thus defined, and l the maximal pairwise distance
between their epicenters. We consider only the chains which are numerous and long
enough:

k ≥ k0, l ≥ l0.

We have noticed that correct premonitory chains have a larger number of earthquakes
with higher magnitudes. Hence the additional criterion was introduced to define a chain:

γ :=
# {earthquakes with M ≥ 3.5 from the chain}

# {earthquakes with Mmin ≤ M < 3.5 from the chain} > γ0,

where γ0 is a numerical parameter.
The chains are detected among the earthquakes with M ≥ Mmin.

The need for RDP. Data analysis demonstrated that most of the target earthquakes
were preceded within a few months by a chain thusly defined; we found, however, that
80-90% of all chains would give false alarms if used as short-term precursors: they are not
followed by a strong earthquake. To reduce this rate we consider the chains in conjunction
with intermediate-term precursors using the RDP approach.
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2.3.2 Intermediate-term patterns

Here we describe intermediate-term patterns used by the RDP methodology.

R-vicinity of a Chain is an important object in our analysis. It is defines as a spatial
R-environment of the nearest-neighbor cluster Ω = wp that connects the epicenters of
the earthquakes that form the chain: ⋃

p

SR(wp).

Here SR(x, y) is a circle of radius R centered at (x, y); p defines a parametrization of
points from the cluster Ω. The intermediate-term precursors that might precede a chain
are looked for within its R-vicinity.

We consider eight intermediate-term patterns; four of them capture premonitory rise
of seismic activity, two — rise of clustering, one — rise of correlation range (more specif-
ically — spreading of seismicity over the fault network), and one — transformation of
magnitude - frequency (Gutenberg - Richter’s) relation.

To detect a pattern P we compute a function FP (t) defined on the earthquake se-
quence. Emergence of a pattern at the moment t is captured by condition

FP (t) ≥ CP ,

where CP is an adjustable threshold. Functions considered here are defined below. Func-
tions are computed in R-vicinity of a chain within T years preceding it. They are defined
in the “event window” [Prozorov and Schreider, 1990; Keilis-Borok et al., 2002] for the se-
quence of N consecutive earthquakes; with sequential indexes (j−N+1, j−N+2, . . . , j)
in the catalog; value of a function FP (t) is attributed to the moment of the last earth-
quake in a sequence, t = tj . In some versions of the algorithm and in tests of prediction
stability the same functions were defined in a sliding time window of length s: [t− s, t].
In this case N = N(t) is the number of events that occurred within this time window.

The catalog cut-off magnitude is determined by fixing the numerical parameter n∗

and finding Mmin that satisfies the following equation

n∗ = #{earthquakes with M ≥ Mmin}.
This does not add the adjustable parameters; instead of Mmin we now adjust n∗. In all
our experiments we took n∗ = 20 or n∗ = 10, as suggested by the previous experience in
the intermediate-term prediction.

In the equations (1)-(8) below we use the following notations: m1/2 is the median
magnitude among N consecutive earthquakes; A∪

r is the area of the union of the circles
of radius r centered at N epicenters in the chain, their sequence numbers are (j − N +
1, j−N +2, . . . , j); A∩

r is the area of intersections of the circles of radius r centered at N
epicenters in the chain;, their sequence numbers are (j −N + 1, j −N + 2, . . . , j); mkl is
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the magnitude of the l-th aftershock of the k-th main shock, as usually [e.g. Kossobokov
and Shebalin, 2003], we consider immediate aftershocks within given time and magnitude
intervals.

Functions measuring the rise of earthquake activity.

“Activity” measures time necessary to collect N consecutive earthquakes:

U(tj) =
1

tj − tj−N+1
, (1)

where ti is the time of i-th earthquake in the catalog.

“Sigma” estimates the total area of faultbreaks:

Σ(tj) =
j∑

k=j−N+1

10mk . (2)

“Acceleration of magnitudes” measures the possible increase in earthquake magni-
tudes:

Am(tj) =
2

N


j∑

k=j−N/2+1

mk −
j−N/2∑

k=j−N+1

mk

 . (3)

“Acceleration of number of earthquakes” measures the possible increase in fre-
quency of earthquakes:

An(tj) =
2

N


j∑

k=j−N/2+1

1

tk − tk−1
−

j−N/2∑
k=j−N+1

1

tk − tk−1

 . (4)

Functions measuring the rise of earthquake clustering.

“Swarm” estimates the clustering of mainshocks:

W (tj) =
A∩
r

πr2
. (5)

“b-micro” estimates the clustering of aftershocks:

bµ(tj) =
j∑

k=j−N+1

∑
l

10mkl . (6)
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Function “Accord” estimates the rise of earthquake correlation range:

A(tj) =
A∪
r

πr2
. (7)

Function “Gamma” estimates the transformation of frequency-size (Gutenberg-
Richter) distribution:

γ(tj) =
2

N

∑
mk≥m1/2

mk. (8)

2.3.3 Formulation of Prediction Algorithm

In this section we formulate the prediction algorithm based on the RDP methodology
described above. We started tests of this algorithm in California, Japan, and Eastern
Mediterranean. Note, that the algorithm described below is not final and can be improved
as new information is obtained in the course of the ongoing experiment.

The algorithm works in two steps: at the first — short-term — step we determine
chains of earthquake following the procedure described in Sect.2.3.1. When the chains
are detected, we proceed to the second — intermediate-term — step. At this step we
consider the functions described in Sect. 2.3.2 for each chain within its R-vicinity and
within time T prior to the chain. We consider eight variants for each of eight functions,
each variant corresponds to a distinct set of numerical parameters: r for “Swarm” and
“Accord” was kept fixed at 50 km; the pair (R, n∗) takes one of the values (100km, 20),
or (50km, 10); N is 20 or 50, and T is 6 or 24 months. Parameters (R, n∗), N , and T are
varied independently. Altogether, for each chain we consider 8× 8 = 64 functions.

If the function reaches or exceeds the critical threshold CP within the time interval T ,
we say that it “votes” for making the chain precursory. If it is lower than the threshold,
we say that it “votes” against making the chain precursory. Finally, we have 64 individual
voices Vi, each of which can be “pro” (Vi = 1) or “con” (Vi = 0). Considering the result
∆ of the collective voting:

∆ =
∑
i

Vi,

we finally decide whether we consider the chain precursory or not; this decision is made
by comparison the voting outcome ∆ with a threshold C.

The important question is how to define the individual critical thresholds CP and
the final voting threshold C. The thresholds CP are automatically determined for each
functional based on its performance within the learning set. The value for CP for a given
function FP should minimize the sum of rates of prediction errors:

nfail

nstrong
+

kfalse

kchain
,
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Figure 5: Detection of optimal threshold Cp for the function N(t) calculated in sliding
time window for Southern California. The values of the function are shown in Fig. 6

where nfail is the number of failures to predict, that is the number target earthquakes
not preceded by a precursory chain; nstrong is the number of target earthquakes; kfalse is
the number of false alarms, that is the number of precursory chains that do not precede
a strong earthquake; kchain is the total number of chains. The detection of the optimal
threshold CP is illustrated in Fig. 5. Here we show the sum of errors for the function N(t)
measured in a sliding time window for Southern California. The values of this function
within vicinities of 14 chains (7 false and 7 correct) are shown in Fig. 6.

The choice of the threshold C should be made considering the goals of the end-user of
the prediction. The ideal prediction, from the common — and very reasonable — view
point, should have as small number of false alarms as possible, predicting as many target
earthquakes as possible. Making C very high (which makes it hard to consider a chain
precursory), we will indeed have a small number of alarms at a price of missing many
strong earthquakes, while making C very low (which makes it easy to consider a chain
precursory), we will predict most of strong earthquakes, at a price of having a larger
number of false alarms. This tradeoff can not be resolved without clear understanding of
the goals of the ongoing prediction and without having a list of possible measures that
can be undertaken in response to such a prediction. The methods of choosing the right
prediction strategy is a well developed part of statistical analysis. Its brief outline is
given in Appendix D.

The important moment is the possibility of a chain to grow after it was already
recognized as precursory. Let te be the moment when the chain reached both required
limits: l0 for the length and k0 the number of earthquakes ( Sect. 2.3.1). If it recognized
as precursory, the alarm is triggered for the time interval (te, te + τ). The chain might
keep growing beyond te, accumulating subsequent earthquakes. And it might remain or
become precursory until some moment t1e (for example until it ended). In that case the
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alarm is extended to the time (t1e + τ). We refer to all the moments when chain was
precursory but still keep growing as “states” of the chain.

If a target earthquake occurs near a chain, and its epicenter should formally be added
to the chain, then we disregard all the states of that chain starting from the moment of
the strong earthquake. However, the already declared alarm is not called off in that case.

2.4 Performance

Here we describe the performance of the above algorithm for the three regions considered.
The algorithm was applied by the following scheme to each of the regions. The time
interval considered is divided into two parts. The beginning part is used for learning
(adjustment of the thresholds), then the algorithm is applied to the second part with all
the parameters fixed.

2.4.1 California

Performance of the algorithm for California is illustrated in Fig. 7. Parameters of the
algorithm are given in the Table 2. The voting threshold is C = 41. The learning period
for this region is 1965-1995. During this period 25 chains were detected, and 12 were
eliminated by the intermediate-term patterns, according to the RDP methodology. Out
of the remaining 13 chains 5 are false alarms, and 8 are correct. Since 1995 4 chains were
detected, 2 of them were eliminated by RDP approach, and the remaining two are correct
alarms that predict the Hector Mine earthquake, and the San Simeon earthquake. The
total spatio-temporal volume of alarms is 9.6%.

2.4.2 Southern California

Performance of the algorithm for Southern California is illustrated in Fig. 8. Parameters
of the algorithm are given in the Table 2. The voting threshold is C = 36. The learning
period for this region is 1965-1995. During this period 40 chains were detected, and 32
were eliminated by the intermediate-term patterns, according to the RDP methodology.
Out of the remaining 8 chains one is false alarm, and 7 are correct, they predict 6 target
earthquakes. Since 1995 14 chains were detected, 12 of them were eliminated by RDP
approach, and out of the 2 remaining one is correct alarm that predict Hector Mine
earthquake, and the last one gives the current alarm. See Sect. 3.3 for more discussion.
The total spatio-temporal volume of alarms is 8.2%.

2.4.3 Japan

Performance of the algorithm for Japan is illustrated in Fig. 9. Parameters of the algo-
rithm are given in the Table 2. The voting threshold is C = 36. The learning period
for this region is 1975-1995. During this period 60 chains were detected, and 46 were
eliminated by the intermediate-term patterns, according to the RDP methodology. Out
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of the remaining 14 chains 5 are false alarms, and 9 are correct. Since 1995 29 chains
were detected, 26 of them were eliminated by RDP approach, and out of the 3 remain-
ing 2 are false alarms, and the last one is correct: it predicted the recent Tokachi-oki
earthquake. See Sect. 3.1 for more information. Note that there is one more strong
earthquake (M = 7.0) that occurred within this last alarm. This earthquake confirms
the possibility of having more than one strong earthquake within a given alarm. The
total spatio-temporal volume of alarms is 12.4%.

2.4.4 Eastern Mediterranean

Performance of the algorithm for Eastern Mediterranean is illustrated in Fig. 10. Pa-
rameters of the algorithm are given in the Table 2. The voting threshold is C = 45.
The learning period for this region is 1983-1997. During this period 7 chains were de-
tected, and 5 were eliminated by the intermediate-term patterns, according to the RDP
methodology. The remaining 2 chains produced correct alarms. Since 1995 3 chains
were detected, all 3 were eliminated by the intermediate-term patterns, and no strong
earthquake occurred. The total spatio-temporal volume of alarms is 2.4%.

2.5 Stability tests

Here we describe different stability tests that were performed for Southern California
region. The same (or similar) tests have been done for all the considered regions. In
general, such tests are the most important (and time- and effort-consuming) part of
development of a prediction algorithm, which in lieu of adequate theory hardly relies on
stability of the performance in respect to variations of its adjustable elements.

2.5.1 Variation of chain parameters

Here we test the stability of the short-term part of our prediction algorithm, namely de-
tection of chains. Recall that chain definition involves 7 parameters: the catalog cut-off
magnitude mmin, time and space thresholds τ0 and rc that define “neighbors”, normaliza-
tion constant c, and thresholds k0, l0, and γ0. We fixed γ0 as shown in Table 2 and varied
the other 6 parameters independently within the following limits: mmin = 2.7(0.1)4.0;
τ0 = 5(5)60 days; rc = 25(5)100 km; c = 0.15(0.05)0.6; k0 = 4(1)9, 10(2)18, 20(5)30;
l0 = 100(25)1000 km. Altogether this gives about 107 different sets of chains. For each
set we determined the following statistics, evaluating the performance of the chains: num-
ber npredicted of strong earthquake targeted for prediction that lie within 75 km from one
of the chains (i.e. within 75 km from one of its elements) and within 9 months after it;
number kchain of chains; number kcorrect of chains that precede one of the strong earth-
quakes within 9 months. By nstrong we denote the total number of strong earthquakes
targeted for prediction.

We consider as “reliable” those sets of chains which correspond to

nstrong − npredicted ≤ 1;
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kchain ≤ 100;

kcorrect/kchain > 1/20.

Note that the fraction 1 − kcorrect/kchain of false chains is allowed to be very high (up
to 19/20), since we hope to eliminate the bulk of these false chains during the next,
intermediate-term part of the algorithm.

We found that the “reliable” sets of chains corresponds to the fairly wide domain of
parameters. Besides, within this domain, the sets of chains are very similar to each other,
that is the chain detection is proven to be stable under the variation of parameters. We
chose a specific combinations of parameters to be used in the forward prediction from
the centers of these stable domains. These parameters are listed in Table 2.

2.5.2 ”Historical“ experiment

Here we test the intermediate-term part of our prediction algorithm. Specifically, we fix
the parameters of chains and the parameters of intermediate-term functionals, except the
alarm thresholds CP . We vary these thresholds and the voting parameter C, perform
prediction and see how stable and good are our results.

We apply our prediction algorithm during the time interval T = [tstart, tend] and
calculate the following statistics describing the prediction performance within this in-
terval: number ntarget of target earthquakes; number nfail of failures to predict; rate
no = nfail/ntarget of failures to predict; total number kchains of chains; total number kprec

of chains recognized as precursory (each chain is counted once); number kfalse of chains
recognized as precursory, but not preceding a target earthquake; rate f = kfalse/kprec of
false alarms; and relative volume τ o(R, t,m) of alarms, its definition follows.

At any moment t some part of the considered territory can be in the state of alarm
initiated by one or, in general case, several precursory chains in their R-vicinities for
duration τ . Let η(t) be the fraction of all the main shocks with m ≥ m0 in the entire
catalog for the considered region, that have epicenters within the spatial area of the
current alarm (i.e. within the R-vicinity of the corresponding chain(s)), independently
of their occurrence time. Then

τ0 =
1

tstart − tend

∫ tend

tstart
η(t)dt. (9)

In all calculations of τ o we take R = 75 km, (R = 100 km for Japan), τ = 9 months, and
m0 = 4.0.

Several tests were performed.

Test 0. Here we check that the algorithm, being applied to the total time interval
considered gives acceptable results. The results are summed up in Table 3 (the current
chain is not included in the analysis).
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Table 3: Results of Test 0

Variant 1, C=36 Variant 2, C=39
kchains ntarget kprec kfalse nfail τ

o,% kprec kfalse nfail τ
o,%

54 7 10 2 0 9.3 7 0 1 7.0

With the optimal values of the thresholds CP determined during this test, the current
chain would have 37 intermediate-term patterns voting for making this chain precursory.
Accordingly, it would be recognized as precursory in variant 1, and as non-precursory in
variant 2.

The idea of the following tests is to use for learning (e.g. establishing values of the
thresholds CP and C) only part of the chains, and then use the fixed values of CP and C
for the remaining chains. In all the tests we keep the same number (64) of functions for
the intermediate-term step of the analysis, and the same values of their parameters. All
64 thresholds CP are found automatically on the basis of the learning set using strategy
of individual minimization of the error (no + kfalse/kprec) for each function individually.

Test 1. We found that all precursory chains preceding targets earthquakes have had at
least one third of events withM >= 3.5 (recall that the threshold to construct chains was
M >= 2.9). The question is: if to use for learning only chains matching this rule, will
the remaining chains be recognized correctly as non-precursory? Results are summarized
in the Table 4.

Table 4: Results of Test 1

Variant 1, C=37 Variant 2, C=41
kchains ntarget kprec kfalse nfail τ o,% kprec kfalse nfail τ o,%

Learning set 36 7 12 4 0 12.5 7 0 1 7.0
Test set 18 0 2 2 0 0 0 0
Learning+test 54 7 14 6 0 13.5 7 0 1 7.0

With the optimal values of the thresholds CP determined during this test, the current
chain would have 38 intermediate-term patterns voting for making this chain precursory.
Accordingly, it would be recognized as precursory in variant 1, and as non-precursory
in variant 2. If we put C = 38, then 11 chains, including the current one, would be
recognized as precursory, with one failure to predict, three false alarms and one current
alarm.

Test 2. Recall that the total number of the detected chains is 54 (excluding the current
one). Let us split this amount, by some time tstart, into two parts: Tlearning = [t0, tstart]
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and T = [tstart, tend]. The first part is used for learning, and the second part for test.
Successively increasing time tstart, so that each time one chain is reassigned from test
to learning, we shall see the performance of the algorithm and its stability. For this
experiment we have to set up the rule to choose the value of the threshold C.

We considered the following variants:
a) C minimizes no + kfalse/kchain;
b) C minimizes no + (kchainτ)/(tstart − t0);
c) Maximal value of C giving one false alarm;
d) Maximal value of C giving one failure to predict;
e) Fixed values: C = 36, C = 37, C = 38.

Results of these tests show that

• The learning set which includes 5 target earthquakes (Landers being the last one)
and consists of 36 first chains is enough for very good “advance” prediction, with
no failure to predict and at maximum one false alarm. This is 2/3 of the total data.

• The performance is worse, but obviously not random, with low fixed threshold C
(strategy e), even with minimal learning set we could imagine (did not try smaller)
- 20 chains and 2 targets (1/3 of the data). It is remarkable that portion of false
alarms above the threshold C is approximately the same in the test set and in the
learning set.

• Stability of the results to the consecutive update of the learning set is quite im-
pressive.

• The performance is very stable to the choice of the threshold C; the range of its
acceptable values is quite broad.

Test 3. This is similar to the Test 2, but each consecutively growing learning set, from
20 to 53 chains, is used only to classify one next chain. Statistics of false alarms and
failures to predict for same strategies is in the Table 5

Table 5: Results of Test 3

strategy a b c d e36 e37 e38 e39 e40
Test starts in 1979 nfail 2 2 3 4 0 0 0 1 2
(34 chains tested) kfalse 2 2 1 0 12 9 9 7 5
Test starts in 1993 nfail 0 0 1 2 0 0 0 1 1
(16 chains tested) kfalse 2 2 2 0 2 1 1 1 1
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3 Advance Predictions

Here we describe three predictions made up to the moment in an ongoing experiment on
short-term earthquake prediction that covers Japan, California, and East Mediterranean.
Recall that these predictions are based on a short-term premonitory pattern “Chain”
which reflects, qualitatively, an increase of the correlation range among small earthquakes
(See Sect. 2.3,2.3.1).

3.1 Advance prediction of Hokkaido earthquake

The M8.1 Hokkaido (Tokachi-oki) earthquake of September 25, 2003 was predicted 6
months in advance. The precursor was detected in Japan in March, 2003. The results of
the experiment, including the reported precursor, were presented at the XXIII Assembly
of IUGG (Hagiwara Symposium on earthquake prediction) in July, 2003, six months prior
to the Hokkaido earthquake.

The region considered for prediction is shown in Fig. 2. The premonitory chain that
produced a correct alarm is shown in Fig. 11. Parameters used to detect the premonitory
chain are given in Table 2. Parameters of intermediate-term functions are described in
Sect. 2.3.2. The voting threshold is C = 36.

3.2 Advance prediction of San Simeon earthquake

The M6.5 San Simeon earthquake of December 22, 2003 was predicted 7 months in
advance. The precursor was detected in May, 2003. On June 21, 2003 the information
on the detected precursor was sent to a group of leading experts and officials.

The region considered for prediction is shown in Fig. 1. The premonitory chain
that produced a successful alarm is shown in Fig. 12. Parameters used to detect the
premonitory chain are given in Table 2. Parameters of intermediate-term functions are
described in Sect. 2.3.2. The voting threshold is C = 41.

3.3 Current alarm: Southern California

A precursory chain was detected in Southern California on October 29, 2003. This chain
is shown in Fig. 13 The chain was extended four times since then, the last time on
December 5-th, 2003. Accordingly, the alarm was declared within the R-vicinity of the
chain for the period October 29, 2003 — September 5, 2004.

The region considered for prediction is shown in Fig. 1. The premonitory chain
that produced a successful alarm is shown in Fig. 13. Parameters used to detect the
premonitory chain are given in Table 2. Parameters of intermediate-term functions are
described in Sect. 2.3.2. The γ condition was not applied. The voting threshold is C = 41.
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Figure 11: Precursory Chain for Hokkaido Earthquake. The precursory chain was re-
ported on July 2, 2003 at the XXIII Assembly of IUGG. Red circles show earthquakes
that form the precursory chain; their size is proportional to magnitude. The gray shad-
owed area shows R-vicinity of the chain; a strong earthquake is expected here during 9
months after the chain emergence. Blue stars show epicenters of two large earthquakes
that happened within the chain vicinity during the 9 months after its emergence. One
of them is the M8.1 Hokkaido (Tokachi-oki) earthquake.
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Appendices

A What is Earthquake Prediction?

Vulnerability of our world to the earthquakes is rapidly growing, due to the well known
global trends: proliferation of high-risk constructions, such as nuclear power plants, high
dams, radioactive waste disposals, lifelines, etc.; deterioration of ground and destabiliza-
tion of engineering infrastructures in megacities; destabilization of environment; popu-
lation growth; and other factors, up to escalating socio-economic volatility of the global
village. Today a single earthquake with subsequent ripple effects may take up to a million
of lives; cause material damage up to 1012; destroy a megacity; trigger a global economic
depression (e.g. if it occurs in Tokyo); trigger ecological catastrophe, rendering a large
territory inhabitable; destabilize military balance in a region (e.g. Middle East). Highly
vulnerable became the regions of low seismicity; among them are European and Indian
platforms, Central and Eastern US, harboring megacities like New York, Moscow, Rome.

As a result the earthquakes joined the ranks of the major disasters that, in the words
of J. Wisner, became ”a threat to civilization survival, as great as was ever posed by
Hitler, Stalin or the atom bomb”. Earthquake prediction on either stage would open a
possibility to reduce the damage by undertaking a set of disaster preparedness measures.

A.1 Formulation of the Problem

The United States National Research Council, Panel on Earthquake Prediction of the
Committee on Seismology suggested the following definition [AEH+76, p7]: “An earth-
quake prediction must specify the expected magnitude range, the geographical area
within which it will occur, and the time interval within which it will happen with suf-
ficient precision so that the ultimate success or failure of the prediction can readily be
judged. Only by careful recording and analysis of failures as well as successes can the
eventual success of the total effort be evaluated and future directions charted. More-
over, scientists should also assign a confidence level to each prediction.” Accordingly,
one can identify an earthquake prediction of certain magnitude range by duration of
time interval and/or by territorial specificity. Commonly, temporal classification loosely
distinguishes long-term (tens of years), intermediate-term (years), short-term (tens of
days), and immediate (days and less) prediction.
Rethinking Earthquake Prediction, Lynn Sykes et al. [SSS99] wrote: “The public

perception in many countries and, in fact, that of many earth scientists is that earthquake
prediction means short-term prediction, a warning of hours to days. They typically equate
a successful prediction with one that is 100% reliable. This is in the classical tradition
of the oracle. Expectations and preparations to make a short-term prediction of a great
earthquake in the Tokai region of Japan have this flavor. We ask instead are there any
time, spatial and physical characteristics inherent in the earthquake process that might
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Table 6: Classification of Predictions

Temporal, in years Spatial, in Source Zone Size

Long-term 10 Long-range Up to 100 L

Intermediate-term 1 Middle-range 5–10 L

Short-term 0.01–0.1 Narrow 2–3 L

Immediate 0.001 Exact 1 L

lead to other modes of prediction and what steps might be taken in response to such
predictions to reduce losses?”

Following common perception many investigators usually overlook spatial modes of
predictions and concentrate their efforts on predicting the “exact” fault segment to rup-
ture (e.g. Parkfield earthquake prediction experiment [BL85]), which is by far more
difficult and might be an unsolvable problem. Being related to the rupture size L of the
incipient earthquake, such modes can be summarized in a classification that distinguishes
wider prediction ranges in addition to the “exact” location of a source zone (Table 6).
The accuracy of prediction might improve when independent observations are brought
into analysis.

From a viewpoint of such classification, the earthquake prediction problem might
be approached by a hierarchical, step-by-step prediction technique, which accounts for
multiscale escalation of seismic activity to the main rupture [KB90A, KMU99]. It starts
with recognition of earthquake-prone zones for earthquakes from a number of magnitude
ranges, then follows with determination of long- and intermediate-term areas and times of
increased probability, and, finally, may come out with an exact short-term or immediate
alert.

A.2 Data

Catalogs of earthquakes remain to be the most objective record of seismic activity on the
Earth. It is common knowledge that catalogs have some errors [HC94]. It is desirable to
have independent records of seismicity for their identification and elimination. In some
cases where there is a number of catalogs with common overlap, the pattern recognition
technique may help in detecting possible errors and duplicate entries [She87]. Such a
technique permits to develop automated procedures, which could reduce the percentage
of errors (see e.g. [She92]). The analysis of the frequency-magnitude graph of the catalog
for consistency, as well as special searches for duplicates and possible errors are the
essential preliminary part in every application of the methodology described below.

In general, the errors in the data can be neutralized in two ways: First, by postponing
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the analysis until the data are refined, and second, by a robust analysis of existing data
within the limits of its applicability. We follow the second way and use routine catalogs
of earthquakes to describe the dynamics of seismic regions, derive precursory seismicity
patterns at the approach of large earthquakes and make predictions based upon these
determinations.

A.3 General Scheme of Data Analysis

A.3.1 Earthquakes to be Predicted

We first define a strong earthquake as the one we aim to predict, by the condition that
its magnitude M ≥ M0. Naturally, the magnitude scale we use should reflect the size of
earthquake sources. Accordingly, Ms is usually taken for larger magnitudes while mb is
used for smaller ones, for which Ms determinations are not available. For many catalogs,
one can use the maximum reported magnitude (e.g., we do so when using the National
Earthquake Information Center/U.S. Geological Survey Global Hypocenters’ Data Base
[GHDB94]).

In most cases the choice of M0 is predetermined by the condition that the average
recurrence time of strong earthquakes must be sufficiently long in the territory considered.
In order to establish a value of M0 for a seismic territory, we consider values of M0 with
an increment of 0.5, unless actual distribution of earthquake size suggests a natural
cutoff magnitude that determines earthquakes sometimes called characteristic [SC84].
The analysis may distinguish a number of intervals M0 ≤ M < M0 + 0.5 and deliver a
hierarchy of predictions.

A.3.2 Premonitory Seismicity Patterns

Studies of observed and modeled seismicity have demonstrated that a strong earthquake
of magnitude M is preceded by certain spatio-temporal patterns of seismicity in a lower
magnitude range. The latter form within a territory and magnitude range normalized by
M .

We consider patterns of the following four types: (i) rise of seismic activity; (ii) rise of
earthquakes clustering; (iii) rise of earthquake correlation range; and (iv) certain changes
in the size distribution (Gutenberg-Richter relation).

Patterns of the first two types have been found in observations first and then in
models; patterns of other two types first in models and then in observations. In observed
seismicity statistical significance has been established so far only for intermediate-term
patterns of the first two types.

A.3.3 Reduction to Pattern Recognition

Inevitably, in the absence of an adequate theory, the patterns above have been found
by a pattern recognition analysis of observed or modeled seismicity. This approach,
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schematically illustrated in Fig. 1, can be summarized as follows:

• Strong earthquakes are identified by the condition M0+c ≥ M ≥ M0, with c about
0.5.

• Prediction is aimed at determination of alarms: time intervals within which a strong
earthquake has to be expected.

• A seismic region under investigation is overlaid by areas whose size depends onM0.
In each area the sequence of earthquakes is robustly described by several functionals
Fk(t, sk), k = 1, 2, . . ., defined on sliding time windows (t − sk, t). We look for
the functionals with different distribution of values inside and outside the alarms.
Single or joint distributions are explored.

• We have to look for premonitory phenomena common for a wide variety of regions
and magnitude ranges, as well as within sufficiently long time periods. Otherwise
the test of a prediction algorithm would be practically impossible. Accordingly,
as often in dealing with high complexity, we have to find the robust and normal-
ized definitions of premonitory patterns, applicable in different conditions. This
applicability is achieved at a price: reduction of the accuracy of predictions.

• Pattern recognition of infrequent events happened to be very efficient for that pur-
pose. This methodology has been developed by the school of I. Gelfand [GGK+76]
for the study of rare phenomena of highly complex origin, a situation where clas-
sical statistical methods are inapplicable. It is akin to exploratory data analysis,
developed by J. Tukey [Tu].

A.3.4 Earthquake sequence.

The simplest routine catalogs of observed earthquakes provide the sequence:

(tk, mk, hk), k = 1, 2, . . . ; tk ≤ tk+1. (10)

Here, tk is the starting time of the rupture, mk is the magnitude, and hk is the vector that
comprises the coordinates of the hypocenter. We exclude aftershocks from the analyzed
earthquake sequence. Premonitory patterns are defined on the sequence of the main
shocks. However the number of aftershocks is retained for each main shock.

A.3.5 Premonitory patterns

We determine for this sequence different functionals F (t) depicting the above character-
istics of seismicity [KB90A]. A premonitory pattern is defined by the following condition

F (t) ≥ CF (11)

The threshold CF is usually defined as a certain percentile of the functional F .
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A.3.6 Prediction algorithms

Prediction algorithm based on a single pattern is formulated as follows. An alarm is
declared for the time period τF after each moment when the condition (11) holds. The
alarm is terminated after a major earthquake occurs or the time t expires, whichever
comes first. The first case is a confirmed prediction (“success”), the second - a false
alarm. A failure to predict is the case when a major earthquake occurs outside an alarm.
Note that one or several informative patterns can be used for prediction. Moreover, a
combination of patterns can be useful for prediction if some or even all of them show
unsatisfactory performance when applied separately. Many algorithms are based on
combination of the patterns.

Obviously this scheme is open for including other patterns and other data, not nec-
essarily seismological ones.

B Disaster management point of view

”Of course, things are complicated.But in the end every situation can be reduced to a
simple question: Do we act or not? If yes, in what way?” /E. Burdick/

”Far better is an approximate answer to the right question, which is often vague, than
an exact answer to the wrong question which can always be made precise.” /J. Tukey/

How to reduce the damage from the earthquakes on the basis of predictions, given
their current accuracy, not necessarily high? The key to this is to escalate or de-escalate
disaster preparedness measures depending on the content of a current alarm: (what and
where is predicted; probability of the false alarm; and cost/benefit ratio of different mea-
sures. Such is the standard practice in preparedness to all disasters, war included. A
costly mistake — that only a precise short-term prediction is practically useful (besides
estimation of seismic hazard) is sometimes emerging in seismological literature. Actu-
ally, as in the case of defense, prediction may be useful if its accuracy is known, even if
it is not high. Diversity of damage. Earthquakes may hurt population, economy, and
environment in very different ways: destruction of buildings, lifelines, etc.; triggering of
fires; release of toxic, radioactive and genetically active materials; triggering of floods,
avalanches, landslides, tsunamis, etc. Equally dangerous are the socio-economic and po-
litical consequences of the earthquakes: disruption of vital services - supply, medical,
financial, law enforcement etc.; epidemics; disruptive anxiety of population, profiteering
and crime; drop of production, slowdown of economy, and unemployment; destabiliza-
tion of military balance; disruptive anxiety of population, profiteering and crime. The
socio-economic consequences may be inflicted also by the undue release of predictions.
Different kinds of damage are developing in different time — and space scales, ranging
from immediate damage to chain reaction, lasting tens of years and spreading regionally
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if not worldwide. A hierarchy of disaster preparedness measures is required by such di-
versity of possible damage. Permanent measures include: restriction of land use; building
codes; insurance; preparedness of civil defense type; R&D. Temporary measures, acti-
vated in response to a time prediction include: enhancement of permanent measures —
safety control, simulation alarms etc.; partial neutralization of high — risk objects; mo-
bilization of post - disaster services; emergency legislation, up to martial law; evacuation
of population etc. These measures are required in different forms on local, provincial,
national and international levels. Different measures require different lead time, from sec-
onds to years, to be activated; having different cost they can be realistically maintained
for different time — periods, from hours to decades; and they have to be spread over
different territories — from selected points to large regions. No single type can replace
another one for damage reduction and no single measure is sufficient alone. On the other
hand many important measures are in expensive and do not require high accuracy of
prediction. Response to predictions. Traditionally a prediction is made with a single
combination of adjustable elements, chosen as the best in some sense. Disaster prepared-
ness measures would be more flexible and efficient, if prediction is made in parallel with
several such combinations, that is several versions of an algorithm.

C Intermediate-Term Earthquake Prediction

C.1 Validated Prediction Algorithms

C.1.1 Algorithm M8

This intermediate-term earthquake prediction method was designed by retrospective anal-
ysis of dynamics in seismicity preceding the greatest, magnitude 8.0 or more, earthquakes
worldwide, hence its name. Its prototype [KBK84] and the original version [KBK87] were
tested retrospectively in the vicinities of 143 points, of which 132 are recorded epicenters
of earthquakes having magnitude 8.0 or greater from 1857 to 1983. In 1986 algorithm
M8 was tested in retrospective application to predict earthquakes of smaller magnitudes,
down to 6.5 [Kos86], by using independent regional seismic databases (note that the
USGS/NOAA global database available to us at that time covered the period through
1983 only). By 1990 the list of the territories, where the original and other versions of
algorithm M8 have been applied, extended to 19 regions listed in Table reftab4.2 [M8].

Algorithm M8is based on a simple physical scheme of prediction briefly described
below. The values of constant parameters entering the algorithm are listed in the end of
the description.

Prediction is aimed at earthquakes of magnitude M0 and higher. Overlapping circles
of diameters D(M0) scan the territory of the seismic region under study. The sequence
of earthquakes with aftershocks removed is considered within each circle. Denote this
sequence by

{ti, mi, hi, bi(e)}, i = 1, 2, . . . ,
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Table 7: Summary of TIPs Diagnosed by Algorithm M8 (after [M8])

Region M0 Time period NT/N VTIPs Nsuc/Nall

Learning

1. World 8.0 1967–1982 5/7 5 7/16

Testing of the Original Version

2. Central America 8.0 1977–1986 1/1 16 1/2
3. Kuril Islands

and Kamchatka 7.5 1975–1987 2/2 17 2/3
4. Japan and Taiwan 7.5 1975–1987 5/6 20 6/8
5. South America 7.5 1975–1987 3/3 18 3/8
6. Western U.S.A. 7.5 1975–1987 -/- 5 0/1
7. Southern California 7.5 1947–1987 1/1 12 1/1
8. Western U.S.A. 7.0 1975–1987 2/2 24 2/2
9. Baikal and

Stanovoy Range 6.7 1975–1986 -/- 0 -/-
10. Caucasus 6.5 1975–1987 2/3 12 2/2
11. East Central Asia 6.5 1975–1987 4/5 24 5/6
12. Eastern Tien Shan 6.5 1963–1987 4/4 27 5/5
13. Western Turkmenia 6.5 1979–1986 -/- 0 -/-
14. Apennines 6.5 1970–1986 1/1 10 1/1
15. Koyna reservoir 4.9 1975–1986 1/1 42 1/1

Testing of Modified Versions

16. Greece 7.0 1973–1987 3/3 18 4/5
17. Himalayas 7.0 1970–1987 2/2 8 3/4
18. Vrancea 6.5 1975–1986 2/2 58 2/2
19. Vancouver Island 6.0 1957–1985 4/4 20 5/7

Regions 1–19 together 39/44 (89%) 18 49/72
Regions 2–15 together 25/28 (89%) 16 28/38

N and NT are the number of all earthquakes and their number within TIPs.
VTIPs is the space-time fraction of TIPs
Nall and Nsuc are the number of all and successful TIPs, respectively
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where ti is the origin time, ti ≤ ti+1; mi is the magnitude; hi is focal depth; and bi(e) is the
number of aftershocks with magnitude Maft or greater during first e days. The sequence
is normalized by the lower magnitude cutoff M = Mmin(Ñ), Ñ being the standard value
of the average annual number of earthquakes in the sequence.

Several running averages are computed for this sequence in the trailing time window
(t−s, t) and magnitude rangeM0 > mi ≥ M . They depict different measures of intensity
in earthquake flow, its deviations from the long-term trend, and clustering of earthquakes.
The averages include:

N(t) = N(t |M, s), the number of main shocks of magnitude M or larger in (t− s, t);

L(t) = L(t |M, s, t0), the deviation of N(t) from longer-term trend, L(t) = N(t) −
Ncum(t − t0)/(t − t0 − s) , where Ncum(t) = N(t |M, t − t0) is the cumulative
number of main shocks with M ≥ M from the beginning of the sequence t0 to t;

Z(t) = Z(t |M, M, s, α, β), linear concentration of main shocks i from the magnitude
range (M, M = (Mmin(Ñ , M0 − g and interval (t − s, t); the linear concentration
is estimated as the ratio of the average source diameter l to the average distance r
between sources; and

B(t) = B(t |M, M, s′, Maft, e) = max{i}{bi|}, the maximum number of aftershocks (i.e.
a measure of earthquake clustering). The sequence {i} is considered in the trailing
time window (t− s′, t) and in the magnitude range (M, M) = (M0 − p, M0 − q).

Each of the functions N , L, and Z is calculated twice with M = Mmin(N), for N = 20
and N = 10. As a result, the earthquake sequence is given a robust averaged description
by seven functions: N , L, Z (twice each), and B.

“Very large” values are identified for each function from the condition that they exceed
Q percentiles (i.e., they exceed Q percent of the encountered values).

An alarm or a TIP, Time of Increased Probability, is declared for five years when at
least six out of seven functions, including B, become “very large” within a narrow time
window (t − u, t). To stabilize prediction, this criterion is checked at two consecutive
moments, t and t + 0.5 years. In the course of a forward application, the alarm can
extend beyond or terminate in less than five years when updating causes changes of the
magnitude cutoffs and/or the percentiles.

The following standard values of parameters indicated above are prefixed in the al-
gorithm M8: D(M0) = (exp(M0 − 5.6) + 1)◦ in degrees of meridian (this is 384 km,
560 km, 854 km and 1333 km for M0 = 6.5, 7.0, 7.5, and 8 respectively), s = 6 years,
s′ = 1 year, g = 0.5, p = 2, q = 0.2, u = 3 years, and Q = 75% for B and 90% for
the other six functions. Usually, the average diameter l of the source, is estimated by
(n)−1 ∑

{i} 10β(Mi−α) where N is the number of main shocks in {i}, β = 0.46 to represent
the linear dimension of source, and α = 0 (which does not restrict generality), while the
average distance r between sources is set proportional to (N)−1/3. The performance of
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the algorithm can be improved by estimating the linear concentration of main shocks
more accurately [RK96].

Running averages are defined in a robust way, so that a reasonable variation of pa-
rameters does not affect predictions. At the same time, discrete character of seismic data
and strict usage of the prefixed thresholds result in a certain discreteness of the alarms.

C.1.2 Algorithm MSc or “The Mendocino Scenario”

This second approximation prediction method [KKS90] was designed by retrospective
analysis of the detailed regional seismic catalog prior to the Eureka earthquake (1980,
M = 7.2) near Cape Mendocino in California, hence its name abbreviated to MSc. Given

a TIP diagnosed for a certain territory 3U at time 3T , the algorithm is designed to find
within 3U a smaller area 3V where the predicted earthquake can be expected. To execute
the algorithm, one needs a reasonably complete catalog of earthquakes with magnitudes
M ≥ M0 − 4, which is lower than the minimum threshold usually utilized by M8. When
this condition does not hold, we assume that the dynamics of earthquakes available in
the database inherits the behavior from lower levels of seismic hierarchy. The detection
of the MSc criteria in such a case is more difficult and might result in additional failures-
to-predict.

The essence of MSc can be summarized as follows. Territory 3U is coarse-grained into
small squares of size s × s. Let (i, j) be the coordinates of the centers of the squares.
Within each square (i, j) the number of earthquakes nij(k), aftershocks included, is
calculated for consecutive short time windows umonths long starting from time t0 = T−6
years onward, to include earthquakes that contributed to the TIP’s diagnosis; k is the
sequence number of a time window. In this way, the time-space considered is divided
into small boxes (i, j, k) of size (s× s× u). “Quiet” boxes are singled out for each small
square (i, j); they are defined by the condition that nij(k) is below the Q percentile of
nij . The clusters of q or more quiet boxes connected in space or in time are identified.

Area 3V is the territorial projection of these clusters.
The standard values of parameters adjusted for the case of the 1980 Eureka earthquake

are as follows: u = 2 months, Q = 10%, q = 4, and s = 3D/16, D being the diameter of
circles used in algorithm M8.

Qualitatively, the MSc algorithm outlines such an area of the territory of alarm where
the activity, from the beginning of seismic inverse cascade recognized by algorithm M8
in declaration of the alarm, is continuously high but infrequently interrupted for a short
time. Such interruption must have a sufficient temporal and/or spatial span. The phe-
nomenon, which is used in the MSc algorithm, might reflect the second (possibly, shorter-
term and, definitely, narrow-range) stage of the premonitory rise of seismic activity near
the incipient source of a main shock.
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Table 8: Earthquakes of Magnitude M = 8.0 or more, 1985–2000

Date and time Region Latitude Longitude Depth M

1985/09/19 13:17 Mexico 18.19◦N 102.53◦W 27 8.1
1986/10/20 06:46 Kermadek 28.12◦S 176.37◦W 29 8.3

• 1989/05/23 10:54 Macquarie 52.34◦S 160.57◦E 10 8.2
1993/08/08 08:34 Guam 12.98◦N 144.80◦E 59 8.2

• 1994/06/09 00:33 Bolivia 13.84◦S 67.55◦W 631 8.2
1994/10/04 13:22 Shikotan 43.77◦N 147.32◦E 14 8.3
1995/04/07 22:06 Samoa 15.20◦S 173.53◦W 21 8.1
1995/12/03 18:01 Iturup 44.66◦N 149.30◦E 33 8.0
1996/02/17 05:59 New Guinea 00.89◦S 136.95◦E 33 8.2

• 1998/03/25 03:12 Balleny 62.88◦S 149.53◦E 10 8.3
2000/06/04 16:28 Sumatera 04.77◦S 102.05◦E 33 8.0

Bullets mark earthquakes outside circles of investigation

C.1.3 Prediction of Largest Earthquakes, M ≥ 8.

We applied algorithm M8 and then MSc in the areas of current alarm in 262 overlapping
circles of investigation. Specifically, 170 circles were selected from larger number that scan
near-uniformly the Circum-Pacific and its surroundings, whereas the other 92 circles are
taken from the Alpine-Himalayan and Burma (25 in Mediterranean, 25 in Asia Minor
and Iran, 28 in Pamirs-Hindukush, and 14 in Burma). Thus, we may conclude the
completeness of the NEIC GHDB is sufficient for application of the original version of
M8 in 80-90% of major seismic belts. A sample prediction, as on the date of writing this
text, is given in Fig. 14 (a complete set of predictions in 1985-2000 could be viewed at
http://mitp.ru/predictions.html). Earthquakes of magnitude 8.0 or more are expected
in 16 circles, each of radius 667 km, that form seven compact areas of alarm. In the
second approximation, the MSc algorithm outlines nine smaller areas inside alarms, where
the great earthquakes are most likely. It is worth mentioning that, due to a very low
recurrence rate of great earthquakes, most of the areas, perhaps all of them, will not be
confirmed until the next update. However, the alarms last for many years (about five
on the average in accordance with τ) and indeed correspond to areas and times with
increased probability of occurrence already confirmed in the test. The probability gain
depends on locality and varies from 2–3 in regions of extremely high activity, like Tonga-
Kermadek, to 20–100 in regions where recurrence of great earthquakes is much lower
than the average, like Sumatera.

The performance of both algorithms is illustrated in Fig. 15 for one segment of the
Circum-Pacific, namely from Kamchatka to Marianas Trench. For the whole territory
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Figure 14: Global testing of algorithms M8 and MSc, M0 = 8.0: Areas of alarm as on
January 1, 2001. Circular areas of alarm in the first approximation, i.e. from algorithm
M8, are shaded light gray, rectangular areas determined in the second approximation by
algorithm MSc are shaded dark gray
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Figure 15: Global testing of algorithms M8 and MSc, M0 = 8.0: Space-time distribution
of alarms from Kamchatka to Marianas. Circles of investigation (light) and their centers
(heavy dots) are shown on the left; the space-time distribution of alarms in 1985–2000
is on the right (dark for M8 and darker for MSc). The space coordinate is the distance
along the belt. Great earthquakes are marked by stars

where prediction is made, the M8 alarms cover on average one third of its length at any
given time, while MSc reduces this number to 10%. All eight earthquakes of magnitude
8.0 or greater, which have occurred in the area in the time span 1985–2000 (Table 8),
are predicted by M8 and only one of them, the 1996 New Guinea, is missed in the
second approximation given by MSc. Table 9 summarizes success-to-failure score; two
time intervals are distinguished there, 1985–1997 and 1992–1997. Seismic data for any
of the two intervals were not available to the authors at the time when they designed
M8 and MSc algorithms. Since 1985 the database has become sufficient for the forward
prediction considered, and in 1992, upon publication of [HKD92], the rigid framework of
the test has been formally established and the test has begun in real-time mode.

C.1.4 Algorithm SSE (Second Strong Earthquake)

Similar to CN, the algorithm SSE whose name is an abbreviation of Subsequent Strong
Earthquake, is another example of applying pattern recognition methods to an earthquake
prediction problem [LV92, VL94, VP93, Vor94, Vo]. The algorithm aims at the answer to
the question: Whether or not a new strong earthquake can follow the one just occurred.
The answer is important for reducing the hazard caused by destabilization of buildings,
lifelines, and other constructions or natural objects, like mountain slopes, glaciers, river
banks, etc., after a strong earthquake has occurred. Many authors considered similar
problems [Bat65, Ver69, Pro78, RJ89, Mat86, HC90].

The advance application of the algorithm SSE started in 1989 demonstrates a high
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Table 9: Performance of Earthquake Prediction Algorithms M8 and M8-MSc: Magnitude
M = 8.0 or more

Test Strong earthquakes Percentage of alarms Significance

period Predicted by Total Circum Pacific Worldwide level, %

M8 MSc M8 MSc M8 MSc M8 MSc

1985–2000 8 7 8 37.2 20.0 34.9 18.0 99.96 99.99
1992–2000 6 5 6 34.1 18.4 30.2 15.3 99.84 99.90

Note: The significance level estimates use the most conservative measure µ of the alarm
volume accounting for the empirical distribution of epicenters in Circum Pacific.

level of statistical significance estimated currently as more than 98%. Seventeen success-
ful predictions have been made, including the second 1991 Rachi earthquake in Geor-
gia (Caucasus) and three Californian earthquakes at Loma- Prieta (1989), Joshua Tree
(1992), and Northridge (1994). The error score is low, consisting of two false alarms and
one failure-to-predict.

The Algorithm. Assume that a strong earthquake of magnitude M1 has just occurred
at the origin time t. The task is to predict whether or not a subsequent strong earthquake
with magnitude M ≥ M1 − a will occur within the time interval (t + s, t + T ) and the
circle of radius R(M1) centered at the epicenter of the occurred one.

Suppose that precursory symptoms similar to those revealed algorithms M8 and CN
(see above in this Chapter) precede the occurrence of a subsequent strong event in the
vicinity of the occurred shock and their absence signify that no strong earthquake will
follow in a certain interval of time.

Naturally, one can presume a similarity of premonitory phenomena only after rescaling
which makes aftershock sequences of main shocks with different magnitudes comparable.
In the design of algorithm SSE the following scaling rules were applied.

• All magnitude thresholds are derived from the magnitude of the occurred strong
earthquake, M1.

• The area of investigation and prediction is the circle with radiusR(M1) = 0.03×100.5M1

km, centered at the epicenter of the occurred strong earthquake.

• Time constants do not scale; the period of prediction is from t + s = t + 40 days to
t+ T = 1.5 years.

The prediction algorithm SSE was developed in the course of retrospective analysis of
21 strong earthquakes in California with M ≥ 6.4 [VL94]. A simple pattern recognition
measure known as the Hamming distance [GZK+80], is applied to reveal a characteristic
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image of an earthquake followed by a subsequent one using eight functions described
below. Seven of them refer to an aftershock sequence and reflect the level of aftershock
activity, the expansion from the main shock, total area of ruptures, and irregularity in
the sequence. One extra function characterizes seismic activation preceding the occurred
strong earthquake.

Large values of the following five functions, accounted on the sequence of aftershocks
with magnitude equal or exceeding M1 −m during (t+ s1, t+ s2), favor the occurrence
of a subsequent strong earthquake.

N , the total number of aftershocks in the sequence.
S, the total area of aftershock ruptures normalized to the rupture area of the occurred

strong earthquake. Specifically, S =
∑

10mi−M1 , where mi is the magnitude of the ith
aftershock from the sequence.

Vm, the variation of magnitude value in the sequence: Vm =
∑ |mi+1 −mi|, it adds

together the absolute values of magnitude difference between subsequent aftershocks.
Vmed, the variation of daily average magnitude in the sequence of aftershocks: Vmed =∑ |µi+1 − µi|, where µi is the daily average magnitude of aftershocks during the ith day

after the occurred strong earthquake.
Rz, the deviation of the aftershock sequence from a monotonously decaying one;

specifically, Rz = (1/2)
∑
(ni+1 − ni + |ni+1 − ni|), where ni is the number of aftershocks

in the interval (t+ i, t+ i+ s3). The sum neglects negative increments of ni.
Small values of the following three functions favor the occurrence of a subsequent

strong earthquake.
Vn, the variation of the daily number of aftershocks in the sequence: Vn =

∑ |ni+1−ni|,
where ni is the number of aftershocks during the ith day.

Rmax, the largest distance between epicenters of the occurred strong earthquake and
an aftershock from the sequence divided by R(M1).

Nfor, the number of earthquakes of magnitude M ≥ M1 −m during (t − s1, t − s2)
within the distance of 1.5R(M1).

Qualitatively, a characteristic image of an earthquake followed by a subsequent one
is as follows: The activity preceding the occurred strong earthquake is low, the number
of aftershocks is large, as well as the total area of aftershock ruptures, the aftershock
sequence is highly irregular in time and magnitude and decay neither monotonously nor
rapidly, and the aftershocks concentrate near the main shock.

Advance Predictions, 1989–1998. The algorithm with pre-fixed parameters has
been applied to all strong earthquakes that occurred in the nine regions; Table 10 lists
the results of the advance predictions.

No earthquakes with M ≥ M0 occurred in Baikal and Stanovoi Range, Turkmenia,
and Balkans. There were additional fifteen strong earthquakes that have not been tested;
nine were too close in time (within 40 days) to earthquakes listed in Table 10; no data
were available for another six earthquakes.
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Table 10: Advance Prediction by Algorithm SSE: The Results of Monitoring in 1989–1998

Earthquake M Will a subsequent Outcome Note
shock occur? of prediction

California

Loma-Prieta, 7.1 NO No shocks with Success
10/18/1989 M ≥ 6.1
Mendocino, 6.9 NO No shocks with Success
7/13/1991 M ≥ 5.9
Mendocino, 7.1 NO No shocks with Success,
8/17/1991 M ≥ 6.1 first step
Joshua Tree, 6.3 YES Landers is Success
4/23/1992 predicted, M = 7.6
Landers, 7.6 YES Northridge M = 68 False alarm
6/28/1992 occurred 19 days

after end of alarm
Northridge, 6.8 NO No shocks with Success
1/17.1994 M ≥ 5.8
Mendocino, 7.1 NO No shocks with Success
4/25/1992 M ≥ 6.1
Mendocino, 7.1 NO Earthquake with Failure,
9/1/1994 M = 6.8 occurred first step
Mendocino, 6.8 NO No shocks with Success,
2/19/1995 M ≥ 5.8 first step
California-Nevada 6.3 YES Earthquake with Success
border, 9/12/1994 M = 5.5 occurred

Pamir and Tien Shan

Kasakhstan, 7.5 NO No shocks with Success
8/19/1992 M ≥ 6.5
China, 7.1 NO No shocks with Success
11/19/1996 M ≥ 6.1
Iran, 7.5 NO No shocks with Success
5/10/1997 M ≥ 6.5

Caucasus

Iran, 7.7 NO No shocks with Success
6/20/1990 M ≥ 6.7
Rachi, 7.1 YES Earthquake with Success
4/29/1991 M = 6.6 occurred
Rachi, 6.6 NO No shocks with Success
6/15/1991 M ≥ 5.6
Erzincan, 6.8 YES No shocks with False
3/13/1992 M ≥ 5.8 alarm
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Table 10: (continued)

Earthquake M Will a subsequent Outcome Note
shock occur? of prediction

Iberia and Maghrib

Morocco, 6.0 NO No shocks with Success
5/26/1994 M ≥ 5.0

Dead Sea rift

Gulf of Aqaba, 5.8 YES Earthquake with Success
8/3/1993 M = 4.9 occurred
Gulf of Aqaba, 7.3 NO No shocks with Success
11/22/1995 M ≥ 6.3

Italy

Assisi, 6.4 YES Earthquake with Success
9/26/1997 M = 5.4 occurred

The advance prediction results can be summarized as follows (Table 11). The rate
of failures-to-predict is low, while the rate of false alarms is considerably high when
compared with the retrospective testing. The statistics of the advance predictions by the
algorithm SSE is not yet sufficient for reliable estimations; nevertheless some preliminary
calculations are quite encouraging. Statistical significance of the method, estimated by
the technique proposed in [Mol97], is more than 98% [Vo]. The relative number of failures-
to-predict n equals 0.2; the rate of alarms τ equals 0.3 (six alarms were diagnosed after
20 strong earthquakes). Thus, the value of n+ τ for advance predictions equals 0.5 being
low enough even for a retrospective testing.

C.1.5 Algorithm CN

Algorithm CN [AKB+84, KBK+88, CN] was developed in the course of retrospective
analysis of seismicity patterns preceding earthquakes with M ≥ 6.5 in California and the
adjacent part of Nevada, hence its name. The essence of this algorithm can be briefly
summarized as follows.

• Areas of investigation are selected in accordance with the spatial distribution of seis-
micity.

• Consider earthquakes with the long-term average annual number Ñ = 3 (after elim-
inating aftershocks) within each area. Compared with Ñ = 20 in algorithm M8
this implies a higher magnitude cutoff Mmin and, therefore, relaxed requirements
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Table 11: Summary of Predictions by SSE

Prediction: Will a subsequent strong Number of predictions
earthquake occur? (total/erroneous)

Learning In retrospect In advance

NO, due to small number of aftershocks 4/0 52/1 4/1
NO, due to pattern recognition criteria 11/0 34/1 10/0
YES 6/1 12/4 6/2
Total 21/1 98/6 20/3

imposed on the completeness of catalogs. This apparent advantage comes at the
cost of losing certain degree of robustness, due to lower chances to correctly identify
the current state of system dynamics.

• The sequence of earthquakes is described by 9 functions (Table 12). Two of them,
N2 and N3, are similar to N and one to B defined in Sect. C.1.1, although with
different choice of numerical parameters.Other functions describe the following: the
fraction of relatively higher magnitudes in the sequence considered G; the variations
of the sequence in time, K and Q; the value of “source energy”, SIGMA; and the
maximum values of “source area and diameter”, Smax and Zmax.

• Following a pattern recognition routine described in [GGK+76], values of the functions
are coarse-grained to distinguish “large”, “medium” and “small” separated by 66-
and 33-percentiles or just “large” and “small” separated by 50-percentile, i.e., the
median.

• The voting of certain pairs or triplets of the discrete values of the nine functions de-
clares (or does not declare) an alarm in the area. The combinations were found orig-
inally by applying the pattern recognition algorithm called “Subclasses” [GGK+76]
to vectors (patterns) determined from the earthquake catalog of southern Califor-
nia, 1938–1984 and the cutoff magnitude M0 = 6.4. An alarm is declared for a
certain period, T = 1 year, when the votes filed by traits D outscore by ∆ = 5
those issued by traits N .

Qualitatively, a TIP is diagnosed when earthquake clustering is high, seismic activity
is also high, irregular and growing, and some quiescence preceded the increase of seismic
activity. Fig, 16 depicts examples of prediction by algorithm CN.

Algorithm CN was first tested retrospectively with pre- fixed parameters for the
following 22 areas [CN]: Northern and southern California (6.4), the Gulf of California
(6.6), Cocos plate margins (6.5) and adjacent to the belt Lesser Antillean arc (5.5), the
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Figure 16: Some examples of the CN algorithm predictions. Times of increased probabil-
ity of strong earthquakes are determined for southern and northern California, northern
Appalachian, and the Cocos Ridge (after [RN99]). Periods of advance prediction are
shaded on the time axis
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Table 12: Functions Describing Earthquake Sequence in Algorithm CN and Their Thresh-
olds for Descrete Evaluation in southern California

Functions N2(t) K G SIGMA Smax Zmax N3 Q Bmax

First threshold 0 -1 0.5 36 7.9 4.1 3 0 12
Second threshold - 1 0.67 71 14.2 4.6 5 12 24

Vrancea area of intermediate-depth earthquakes, East Carpathians (6.4), Pamirs (6.5),
Tien Shan (6.5), Baikal Lake (6.4), Central Italy (5.6), Caucasus (6.4), Kangra, Nepal
and Assam regions in the Himalayas (6.4), Krasnovodsk, Elbruz and Kopet Dag regions
in Turkmenia (6.4), area of Dead Sea rift (5.0), Northern and Southern Appalachians
(5.0), and Brabant-Ardennes (4.5).

The earthquake catalogs available allowed to retrospectively consider time intervals
from 12 to 22 years in each area, amounting to 32 years in Italy and 45 years in California.
60 strong earthquakes occurred in all areas in the test period. 50 (83%) of these events
occurred within alarm periods and 10 earthquakes were missed. On average, TIPs in the
area considered occupy about 27% of time, from 2 to 4 years per earthquake (except for
6 to 8 years in southern part of Dead Sea rift, Kopet Dag and Vrancea).

Advance prediction in area was carried out for several periods, from a year in the
southern Dead Sea rift zone to about 16 years in southern California [RN99]. Altogether,
24 strong earthquakes have occurred in all regions within test periods. Of these, 11
(46%) were predicted and 13 were missed. Total alarm time occupies 26% of the periods
considered. In the case of 13 areas, where at least one strong earthquake has occurred
within test periods, the time of alarms occupied 29.4% of the total, and it is 18.2% in
the remaining 9 regions where no strong earthquakes did occur.

The level of significance α = 95% follows from a rough statistical estimates [RN99].
However it ignores the fact that the overall statistics are collected from different areas
with different rate of seismic activity. A more rigorous and cautious estimation gives
α = 91%, which is not very stable and may change to 96 or 81% with the next strong
earthquake predicted or not [RN99]. Such level of sensitivity is essentially due to a small
sample accumulated so far and can be overcome by continuing the test. The presented
cautious estimate ignores the results of monitoring in 9 areas, where strong earthquakes
did not occur in the test period. Therefore the significance of predictions by algorithm
CN might be higher [MD].

D Prediction Validation

Recent discussions of earthquake prediction make increasing appeal to the language and
general properties of dissipative dynamical systems. When dealing with a dynamical
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system, one is usually interested in the amount of deviation of the system’s position from
the true one at a given time. The value of a deviation is measured in a suitable metric
on the system phase space and is a measure of prediction performance. For example,
the classical Kolmogoroff-Wiener problem is concerned with the prediction of a random
time series x(t) based on observations available with some time delay τ by the time t−τ .
Prediction performance is given by a single value, namely, the relative rms error

E|x(t)− x̂τ (t)|2/E|x(t)|2,

where x̂τ is the forecast of x, and E denotes mathematical expectation or averaging over
the paths of x.

Speaking in the language of dynamical systems, one can treat large seismic events
as anomalous states (disasters) in lithosphere dynamics; we are interested first of all in
the positions and times τn of the disasters. To take an instance, when a time series
x is discussed, the disasters may be random times when x goes beyond a critical level
(the limiting acceptable load in the physical system). Dealing with a general dynamical
system, the τn are the times at which the path of the system occurs in a selected region of
the phase space. In application to the seismic process, this may be a spatial zone G and a
magnitude range M > M0. The Lyapunoff exponents of a dynamical system, which can
be used to judge about the horizons of dynamical prediction, tell us practically nothing
as to whether disasters can be predicted. In addition, a forecast of disaster time that is
very accurate, but delayed τ̂n > τn, can be unacceptable in practical terms, because a
forecast of τn has to be made in advance. For this reason the metrical proximity of τ̂n
and τn is useless in disaster prediction.

D.1 Error Diagram

The performance of an earthquake prediction technique actually requires at least two
quantities rather than a single one to characterize it: the rate of failures-to-predict and
the relative alert time, τ . These can be given precise meaning, when more definitions
have been formulated. Here and below, we will only discuss the time behavior of large
earthquakes, in other words, forecasts will concern events of magnitude M > M0 in a
given area G. The sequence of large events is assumed to make a random point process
dN(t) (N(t) is the number of events in the interval (0, t)) of finite rate λ > 0, i.e.,
EdN(t) = λdt. For simplicity the point process dN(t) will be considered on the lattice
Zδ = {δk, k = 0,±1,±2, ...} as well, assuming that no more than one event can occur in
the interval (t, t+ δ):

Prob{δN(t) = N(t+ δ)−N(t) > 1} = 0, t ∈ Zδ.

Let J(t) be the information available at time t for prediction of events in the point
process dN(t). In practice, J(t) may include earthquake catalogs for the region containing
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G, data on physical fields, and observations of precursors. Any type of information is
relevant to a constant moving interval of the form (t − ti, t − τi), where τi is the delay
of the ith data type. The simplest case is where the observer uses information J(t) and
makes the decision π(t): calling (π = 1) or not calling (π = 0) an alert in the time
interval (t, t+ δ), where δ is some time unit. This may be equal to the time increment at
which the information is updated. An event is considered to have been predicted, when it
occurred during an alert period, and is a failure-to-predict otherwise. The set of decisions
{π(t)} = π is called the prediction strategy. In practice the strategy is defined by the
method or by the prediction algorithm. Discrete-time strategies were defined above just
in order to simplify the discussion.

We now define quantities to characterize the predictive properties of a strategy π in
the interval (0, T ). These are the relative number of failures-to-predict

n̂π =
∑

0<t<T

(1− π(t)) · δN(t)/N(T ) (12)

and the relative alert time

τ̂π =
∑

0<t<T

π(t)δ/T. (13)

Without loss of generality we can assume the information flow J(t) on which the
prediction strategy is based to be a multivariate random process. Suppose the process
(δN(t), J(t)), t ∈ Zδ is stationary and ergodic. The application of the individual ergodic
theorem [Bi] to (12), (13) will give the result that n̂π and τ̂π converge to the respective
constants nπ and τπ with probability one. These limits define two long-term prediction
errors for the strategy π, the rate of failures-to-predict nπ and the relative alert time τπ.

Representation of a strategy π by a pair of numbers n and τ gives a subset E(J) of the
square [0, 1]× [0, 1] which depends on information flow J (Fig. 17). It turns out that this
set admits of an effective description. The key observation is that any two strategies π1

and π2 of the type considered can be combined into a new strategy that independently
uses π1 or π2 with probabilities q and 1 − q in each time interval δ. This leads to a
mixture of parameters (n, τ)i of the original strategies with the same weights q and 1−q.
Hence the error set E = {(n, τ)π} corresponding to various strategies is convex, if these
strategies are based on the same information J(t). Now note that the error set E contains
points (1, 0) and (0, 1) and, by convexity of E , the diagonal n + τ = 1. The first point
stands for the widespread optimistic strategy in which an alert is never declared. The
second point corresponds to the total pessimistic strategy in which the continuous alert
is kept. Points on the diagonal n + τ = 1 correspond to the strategy of a random guess
in which an alert is declared with probability p independent of J(t).

The set E has the center of symmetry (1/2, 1/2), because every prediction corresponds
to the antipodal prediction π− where an alert and non-alert swap places and errors (n, τ)
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Figure 17: Error set E(J) for prediction
strategies based on a fixed type of infor-
mation J . Point A corresponds to opti-
mistic strategy, point B to pessimistic
strategy, the interval AB corresponds to
strategies of random guess. C is the cen-
ter of symmetry of E(J). π and π− are
a strategy and its antipodal strategy. Γ
is the error diagram of optimal strategies.
Arrows indicate a better forecast relative
to the strategy π0. Dashed lines are con-
tours of the loss function γ = max(n, τ).
Q∗ are errors of the minimax strategy,
n = τ . Dash-dotted lines are contours of
the loss function γ = τ/(1− n)

are replaced by (1 − n, 1 − τ). Therefore all points of E above the diagonal n + τ = 1
correspond to strategies constructed by rejecting nontrivial strategies with n+ τ < 1.

Let us show that only strategies at the lower boundary Γ of the set E are important.
The boundary Γ connects the points (1, 0) and (0, 1). It is monotone and concave
due to the properties of E . So far there is no strategy with errors (0, 0), i.e., an ideal
strategy that guarantees a 100% prediction of large events in G with no alerts at all.
Consequently, Γ does not contain (0, 0). The points of Γ are incomparable, that is, if
τ1 < τ2, then n1 ≥ n2. For any point (n, τ) ∈ E there exists another point (n1, τ1) ∈ Γ
where n1 < n, τ1 < τ , which corresponds to a better prediction. Therefore, the total
error set E contains a minimum set of best and incomparable strategies. The number of
these strategies is infinite, and they are described by an error diagram Γ (Fig. 17).

In order to be able to compare strategies, we choose some one-dimensional character-
istic γ = γ(n, τ) that is a function of (n, τ). We will call it a loss function if γ is increasing
in each argument. Typical examples of γ that have been employed at the research phase
of prediction are functions of the form γ1 = n + τ , γ2 = max(n, τ), γ3 = τ/(1 − n),
γ4 = n/θ(τ0 − τ), or γ5 = τ/θ(n0 − n), where θ(x) = 1 for x > 0 and θ(x) = 0 otherwise.
The strategy π∗ will be called γ-optimal, when it minimizes γ(nπ, τπ). For example, the
optimal strategy minimizes the mean prediction error (n+ τ)/2 in the γ1 case and opti-
mizes the number of successes at a given level of alert time in the γ4 case. Knowing the Γ
diagram, one can easily find the errors of the γ-optimal strategy graphically. We assume
that the sets of levels of γ, Au = {(n, τ) : γ(n, τ) < u} are convex for any level u. The
sets Au are increasing with increasing u. Obviously, there is a critical level u∗ where Au
and E(J) touch each other. Since Au and E(J) are convex, this will be a single point (the
regular case) or a line segment (not a typical case). The point of contact Q∗ = (n∗, τ ∗)
will determine the γ-optimal errors. By construction it belongs to the Γ error diagram.
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It is easily seen that any point of the Γ curve can be made γ-optimal by a suitable
choice of the loss function. This can be demonstrated as follows. The Γ curve is always
on one side of its tangent. Let a(n− n∗) + b(τ − τ ∗) = 0 be the equation of the tangent
to Γ at the point (n∗, τ ∗). Then a and b have the same sign, since Γ is decreasing along
the n-axis, while f = |a|n+ |b|τ is the desired loss function for the point (n∗, τ ∗).

To sum up, if there is no ideal forecast with zero errors, the Γ curve consists of a
continuum of points corresponding to γ-optimal strategies. The absence of a universal
prediction strategy for a given information flow was far from being quickly grasped in
prediction practice.

When the information flow is updated, J ⊂ J ′, the set E(J) expands; for this reason
the diagram Γ(J ′) will be below (to be more accurate, not higher) Γ(J). The Γ(J) curve
can be regarded as characterizing the limiting capability of information J in the prediction
of large events in region G. The paradox here consists in the fact that the Γ curve
always includes the end points (0, 1) and (1, 0) corresponding to the trivial strategies
of an optimist and a pessimist. These ignore all information and become optimal with
a special choice of the loss function. For example, looking from the economic point of
view, there is no sense in predicting seismic events where there is no threat to economy
and population.

D.2 The Optimal Prediction Strategy

We will try to find out what is the structure of the optimal prediction strategies based
on the information flow J(t). To do this, we define the hazard function r(t), which is the
conditional (with respect to the information J(t)) rate of predicted events:

r(t) = Prob{an event occurs in (t, t+ δ)|J(t)}/δ.
The symbol λ above stands for the unconditional rate of large events, i.e., EδN(t)/δ = λ.

The statement that follows provides a description of the optimal strategy with errors
(n∗, τ ∗) ∈ Γ. The description is not unique.

Statement 1. If the flow (n(t), J(t)) is stationary and ergodic, then there exists a
threshold r∗ depending on the loss function γ such that the optimal prediction strategy
declares an alert every time when r(t) > r∗. In rare cases in which the relation r(t) = r∗

has a nonzero probability, an alert is selected with some probability p∗. If Q∗ is the point
where the isoline γ = γ∗ touches the error curve Γ, then the threshold r∗ is expressed in
terms of derivative common for Γ and lines γ = γ∗ at Q∗.

r∗ = −λdn
dτ

(Q∗). (14)

If one of the curves is not differentiable at Q∗, then the derivative is the slope of any
straight line tangent to Γ at Q∗.
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The statement is remarkable in that it holds for a very broad class of the processes
(n(t), J(t)). Nevertheless, the proof [Mo] is quite elementary and reduces to the classical
Neyman-Pearson lemma in the statistical theory of hypothesis testing. The generality
results from the choice of the class of loss functions which involve two prediction char-
acteristics only, n and τ . It is just statistics such as these which are considered at the
research phase of prediction. This is not at all sufficient from the practical point of view.
For example, the goal function of the form γ(n, τ) ignores the rate of points where the
strategy changes state. Frequent changes from alert to non-alert make for lower trust in
the prediction involved. This circumstance is well known from practical forecasts of after-
shocks, the population beginning to ignore seismologists’ warnings when they frequently
call short-lived alerts.

Example. Consider γ = αλn + βτ . This loss function can be given an economic
meaning, even though a naive one. Let α be the mean loss prevented by successful
prediction. The use of a strategy with errors (n, τ) will fail to predict λn events per
unit time. Consequently, αλn will give the loss per unit time resulting from failures-to-
predict. The quantity βτ gives the loss due to alerts per unit time, when β denotes the
cost of maintaining the state of alert per unit time. It follows that γ gives the loss per
unit time. The example of a loss that is linear in n and τ is important in that one can
find the optimal strategy for it without knowing the relevant error diagram Γ. This can
be demonstrated as follows. The isolines γ = c form a set of parallel straight lines with
the slope dn/dτ = −β(αλ)−1. The latter determines the slope of the tangent line to Γ
at the point Q∗. Therefore, the use of (14) gives the optimal γ-strategy as

π(t) =

{
1 r(t) > β/α
0 r(t) < β/α.

(15)

We have assumed that P (r(t) = β/α) = 0, which generally holds.
Relation (15) is highly important for the analysis of the earthquake prediction prob-

lem as a whole. In the present case it separates into two independent problems. The one
(seismological) reduces to estimation of the hazard function r(t), while the other (eco-
nomic) problem is to estimate the economic parameter β/α. Nevertheless, it is important
during the research phase of prediction to know at least the order of β/α, since one can
hardly hope to get stable estimates of r in the entire range of values.

D.3 Statistical Problems

D.3.1 The Performance of Prediction Algorithms

Intermediate-term prediction techniques recently developed actually address the theoret-
ical problem of whether earthquakes are predictable. Therefore, the techniques mostly
reduce to the simplest two-phase alert, as characterized by the errors (n, τ). The positive
answer to that question will be found in the proof that the error diagram Γ is significantly
different from the straight line n + τ = 1. The diagram can be estimated by the lower
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mon tangent line for these diagrams

bound to the convex hull of points (n, τ)A relevant to different prediction algorithms {A}
based on the same data set, the same prediction domain, and the magnitude range of
large events.

The above idea can be used for comparisons among algorithms. Most algorithms
involve internal parameters that are subsequently held fixed in an arbitrary manner.
Varying the essential parameters θ of an algorithm A, one gets an error set (n, τ)θ.
Considering again the lower bound of its convex hull, one arrives at the error curve ΓA
representing the prediction power of the algorithm based on the data set chosen. Suppose
the curves ΓA for two algorithms (Fig. 18) intersect at an intermediate point (the end
points are always the same). Let ΓA1 and ΓA2 have a common tangent of slope −p
(Fig. 18). When the goal is a linear loss of the γ = an + bτ type, then it follows from
Fig. 18 that A1 is to be preferred when a/b > p and A2 otherwise (a/b < p).

D.3.2 Estimation of (n, τ)

Statistical estimators of (n, τ) are generally unstable owing to the short history of a
forward forecast. When the errors (n, τ) refer to a time-space forecast, the value of τ
measures the relative space-time occupied by alerts. Unjustified extension of the space
by adding aseismic areas can make τ as small as one likes. One way out of this difficulty
is to collect estimates of (n, τ) for prediction algorithms having a common prediction
space and a common magnitude range of large events. Anomalies in the (n, τ) estimates
become evident in the (n, τ)-diagram.
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D.3.3 Estimation of r(t)

The amount of information provided by J(t) as to the appearance of a large event in the
interval δt is given by the Shannon quantity I = lnPG(J(t)), where

PG(J(t)) = Prob(δN(t) = 1|J(t))/Prob(δN(t) = 1) = r(t)/λ

Aki [Ak] has called PG(J) the probability gain and put forward the following predic-
tion program based on a combination of precursors:

- choose simple, weakly correlated and sufficiently informative precursors A = {A1, ..., Ak, ...},
- estimate the quantity PG(Ak) for each,
- find PG(A(t)) for the whole set of precursors A(t) = (Aj1, ...Ajk) observed up to the

time t from the relation

PG(A(t)) = qtPG(Aj1) · · · PG(Ajk) (16)

The factor qt is related to precursors that have not been observed by time t. The above
program was implemented for the Caucasus region [SCZ]. Unfortunately, this method
of estimating r(t) seems oversimplified. The equality (16) means that the precursors
A1, ..., An are conditionally independent with respect to the event {δN(t) = 1}. That
is impossible physically, when the {Ak} are really precursors, even though independent
ones. Consider a formal example: suppose ξ1 and ξ2 are independent random variables
and a large event occurs, when |ξ1 + ξ2 − 1| < ε. Hence ξ1 + ξ2 � 1 in the conditional
situation.

Vere-Jones [VJ], Utsu [Ut] and Aki [Ak] considered the estimation of r(t) as the
foremost task of a prediction specialist. This only in part is true (see Statement 3). The
estimation of r(t) in the entire range of values is unstable. This has been demonstrated
by using the simple problem of the characteristic earthquake prediction. Stability is
potentially possible in the case of an ”academic” forecast involving two alert states,
because exact knowledge of r(t) is needed in the neighborhood of a fixed level. The
number of such levels in a realistic situation have to be greater than two or even infinitely
many (Statements 2 and 3). For this reason special importance will be attached to the
maximum possible reduction of dimensionality for the prediction functionals. The best
solution to that problem today is provided by the M8 algorithm.

An important example of estimating r(·) is statistical modeling of earthquake cat-
alogs dating back to Hawkes [Ha] and Kagan [Ka1]. We are speaking of the so-called
self-exciting model in which events x =(time t, magnitude M , location g) divide into
”main” and ”offspring”. The main ones make a Poisson process with the rate λ0(x);
once occurring, any event xi will generate offspring events which form a Poisson process
with the rate λ(x|xi) (note that

∫
λ(x|xi) dx ≤ ρ < 1). Reproduction of any event (both

a main one or offspring) occurs once and independently of one another. Consequently,
the probability of finding an event on the interval dx is r(x) dx with
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r(x) = λ0(x) +
∑

t(xi)<t(x)

λ(x|xi) (17)

where t(x) is the time coordinate of the point x.
The offspring events with a common main event as progenitor x0 play the part of

aftershocks of x0, while offspring events for x can be considered as direct aftershocks
of x. The properties of aftershocks are well known: the Gutenberg-Richter law for the
magnitudes and the Omori law for the time decay. The properties of direct aftershocks
are not known, and this causes difficulties and ambiguities in the parameterization of
λ(x|xi) (compare the solutions of this problem in [KK] and [KJ]).
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