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We introduce a statistical methodology for clustering analysis of seismicity in the time-space-energy
domain and use it to establish the existence of two statistically distinct populations of earthquakes: clus-
tered and nonclustered. This result can be used, in particular, for nonparametric aftershock identification.
The proposed approach expands the analysis of Baiesi and Paczuski [Phys. Rev. E 69, 066106 (2004)]
based on the space-time-magnitude nearest-neighbor distance � between earthquakes. We show that for a
homogeneous Poisson marked point field with exponential marks, the distance � has the Weibull distribu-
tion, which bridges our results with classical correlation analysis for point fields. The joint 2D distribution
of spatial and temporal components of � is used to identify the clustered part of a point field. The pro-
posed technique is applied to several seismicity models and to the observed seismicity of southern California.
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Introduction.—Earthquake clustering is the most promi-
nent feature of the observed seismicity. Well-studied types
of clustering include aftershocks, foreshocks, pairs of large
earthquakes, swarms, bursts of aftershocks, rise of seismic
activity prior to a large regional earthquake, etc. Single
clustering phenomena and their combination are essential
elements of understanding the seismic stress redistribution
and lithosphere dynamics [1], as well as constructing em-
pirical earthquake prediction methods and evaluating re-
gional seismic hazard [2].

Baiesi and Paczuski [3] have developed an elegant
framework for earthquake clustering analysis by defining
the pairwise earthquake distance �ij as the expected num-
ber of events in the time-space domain bounded by events i
and j. We expand here their approach to demonstrate the
existence of two statistically distinct subpopulations in the
observed seismicity of southern California: One corre-
sponds to a ‘‘uniform’’ flow of events that is stationary in
time but may be inhomogeneous in space, while the other
corresponds to clustered events, which are much closer to
each other in time and space than would be expected for the
above ‘‘uniform’’ flow. The earthquakes from the clustered
part, by and large, obey the conventional definitions of
aftershocks [4]. Our analysis, therefore, provides an objec-
tive statistical foundation for developing a nonparametric
aftershock identification procedure.

Our finding is supported by theoretical and numerical
analyses of several seismicity models, including the epi-
demic type aftershock sequence (ETAS) model [5]. The
main theoretical result is that for a stationary and homoge-
neous Poisson field with independent exponential magni-

tudes, the distance � has Weibull distribution, the same
distribution as the Euclidean nearest-neighbor distance for
a homogeneous point field. The proposed cluster detection
technique is built upon the deviations of the observed
nearest-neighbor distance � from this theoretical predic-
tion. The key element of the applied analysis is the joint 2D
distribution of spatial and temporal components of �; this
distribution clearly separates the clustered and nonclus-
tered parts of a point field.

Distance between earthquakes.—Consider an earth-
quake catalog fti; �i; �i; migi�1;...;N , where each record i
describes an individual earthquake with occurrence time
ti, position given by latitude �i and longitude �i, and
magnitude mi; here, we do not consider the depth.

For any two earthquakes i and j we define the time-
space-magnitude distance by

 nij �
�
c�ijr

d
ij10�b�mi�m0� �ij � 0

1 �ij < 0:
(1)

Here �ij � tj � ti is the earthquake intercurrence time, rij
the surface distance, d the (fractal) dimension of earth-
quake epicenters, and b the parameter of the Gutenberg-
Richter relation (exponential fit to the magnitude distribu-
tion):

 P fm> xg � 10�b�x�m0� for x � m0: (2)

By connecting each event with its nearest neighbor with
respect to the distance n one obtains a time-oriented tree T
whose root is the first event in the catalog. Such trees were
introduced and studied by Baiesi and Paczuski [3].
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It is readily checked that the space-time volume of a ball
of radius C, BC :� f�t; x; y;m�:n�t; r; m�<Cg, is infinite
due to heavy tails of the distance n in time when d > 2, in
space when d < 2, and in both time and space for d � 2.
Hence, any such ball almost surely contains an infinite
number of events from N that prevents meaningful
nearest-neighbor analysis. To avoid this, we introduce the
truncated distance

 �ij �
�
nij tij � t0; rij � r0

1 otherwise:
(3)

Choosing t0 and r0 large enough will ensure that the
measures � and n are equivalent within a bounded spatio-
temporal area. The nearest-neighbor distance is defined as
��j :� mini�ij. We will drop the subindices ij or j unless it
is important which pair of earthquakes is considered.

Main result: Poisson field.—Consider a spatiotemporal
marked point field N with temporal component t 2 R,
spatial component x 2 R2, and scalar marks m that repre-
sent the earthquake magnitude.

Assumption 1 (i) N is a stationary and homogeneous
Poisson marked point field with intensity �. (ii) Magnitude
marksmi are independent of the field (tj;xj) and each other
and have exponential distribution (2) with parameters
~b;m0. (iii) Let f � b=~b, where b is the prior parameters
of the Gutenberg-Richter law (2) used in (1).

Proposition 2 Under Assumption 1, the nearest-
neighbor distance �� has the following distribution, for
large �0; r0:

 P f�� < xg � 1� exp
�
����

�
x

�0r
d
0

��
: (4)

Here � is independent of x and we have

 ��w� �

8>>>>>>>>><
>>>>>>>>>:

w d < 2; f < 1
w lnw d � 2; f < 1
w2=d d > 2; d > 2f
w2=d lnw d > 2; d � 2f
w1=f d < 2f; f > 1
w lnw d < 2; f � 1
w�lnw�2 d � 2; f � 1;

(5)

where ��w� �  �w� stays for limw!0
��w�
 �w� � 1.

The proof will be published elsewhere.
Proposition 2 implies that, for b � ~b, d � 2, and d �

2f, �� has Weibull distribution. Furthermore, the distribu-
tion of �� is independent of the magnitude threshold m0;
this facilitates analysis of data from different periods and
regions that might have different m0.

We define the magnitude-normalized time and space
components of � as

 Tij :� �ij10�bmi=2; Rij :� rdij10�bmi=2: (6)

Obviously � � TR (without loss of generality, we as-
sumed here c � 1 and m0 � 0) and Proposition 2 implies

that the distribution of the nearest-neighbor pair (T; R) is
concentrated along the line log10T 	 log10R � xm, where
xm is the mode of the distribution (4), while the level lines
are of the form log10T 	 log10R � const. Figure 1(a) illus-
trates this by showing the empirical distribution of the pairs
(T; X) for a Poisson homogeneous field with exponential
magnitudes.

Modeled seismicity.—Here we analyze numerically the
distribution of the nearest-neighbor distance �� for three
point field models: (i) homogeneous Poisson marked field,
(ii) single self-excited aftershock series governed by Omori
law, and (iii) ETAS model that combines the first two.

The ETAS model was introduced by Ogata [5]; it speci-
fies a marked point processN by its conditional intensity at
instant t and spatial location (x; y):

 ��t; x; y� � �0 	
X
i:ti<t

10bmi�T����R�r�; (7)

where �0 > 0, � � t� ti, r2 � �x� xi�
2 	 �y� yi�

2, and
the temporal (�T) and spatial (�R) kernels are given by [5]
�T�t� � �t	 c��1��T , �R�r� � �r	 d��1��R with posi-
tive c, d, �T , and �R. Magnitudes are drawn independently
from the exponential distribution (2).

A single aftershock series is a particular case of ETAS
model with �0 replaced by ��0; 0; 0�, which represents the
main shock; its magnitude is a model parameter.

Figures 1 and 2 show the distributions of log10�
� and

corresponding pairs (T; R). The Poisson model behaves as
suggested by Proposition 2. For a single aftershock series,
one observes almost symmetric (T; R) scatter, which sug-
gests that time and space components of � are indepen-
dent. Notably, the distribution of �� in this case is close to
log-normal (Fig. 2, middle panel). The ETAS distribution
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FIG. 1. Distribution of time and space components (T; R), of
the nearest-neighbor distance �� for a 2D homogeneous Poisson
field with exponential magnitudes (a), single aftershock series
obeying Omori law (b), ETAS model (c). Here b � 1, d � 2.
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has two prominent ‘‘modes’’: A scatter along TR � const
in the upper right part of the plot [Fig. 1(c)] and an
apparently independent scatter closer to the origin.
Evidently, combining the homogeneous Poisson flow and
aftershock clustering we have combined as well the corre-
sponding modes of the (T; R) distributions.

Observed seismicity: Southern California.—We use a
southern California earthquake catalog produced by the
Advance National Seismic System [6], and consider earth-
quakes with magnitude m � 2:0 within a rectangular re-
gion bounded by 122
W, 114
W, 32
N, 37
N during
January 1, 1984–December 31, 2004, the same as in [3].

The empirical distributions of the logarithm of the
nearest-neighbor distance, log10�

�, and its components
(T; R) are shown in Figs. 3 and 4. The distributions are
prominently bimodal, revealing the existence of two sta-
tistically distinct earthquake populations. One of them
corresponds to log10T 	 log10R � const; according to
Proposition 2 it describes stationary (but possibly space-
inhomogeneous) Poisson seismicity. The other population
corresponds to log10R � �2; it corresponds mainly to the
aftershock clustering.

To detect individual clustered events, we fix a threshold
�0 and remove all the links with ��j > �0 from the tree T.

This will result in the forest (set of trees) F��0� �

fTig
N��0�
i�1 . Each tree Ti in the forest corresponds to a single

earthquake cluster; these clusters can be further analyzed
in order to solve a particular applied problem. For example,
aftershocks are often assumed to have smaller magnitude
than the corresponding main shocks [4]. Possible earth-
quake clusters observed prior to the main shock are then
called foreshocks. In this situation, it is natural to define the
ith main shock as the largest earthquake within the tree Ti,

and aftershocks (foreshocks) as the events from Ti that
occurred later than (prior to) the main shock. The results
of this aftershock-detection procedure in California are
shown in Fig. 5; here we used �0 � 10�5 suggested by
the distribution of �� and (T; X) (Figs. 3 and 4). The figure
focuses on the Landers earthquake, the largest one in
California during the considered period. The three groups
of earthquakes are identified as aftershocks: (a) the promi-
nent earthquake cluster in the immediate vicinity of the
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FIG. 2. Distribution of the logarithm of the nearest-neighbor
distance log10�

� for a 2D homogeneous Poisson field with
exponential magnitudes (top), single aftershock series obeying
Omori law (middle), ETAS model (bottom). Here, b � 1, d � 2.
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FIG. 3. Bimodal distribution of log10�
� for the observed seis-

micity of southern California during 1984–2004; different pan-
els correspond to different lower magnitude cutoffs. Here b � 1
and d � 1:6 as in [3]. Notice the bimodal structure with the two
modes separated at � � 10�5.
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FIG. 4. Bimodal distribution of time and space components
(T; R) of the nearest-neighbor distance �� for the observed
seismicity of southern California during 1984–2004. Solid line
in (a) and (b) corresponds to log10T 	 log10R � �5. Different
panels correspond to different values of m0 and d: (a) m0 � 3:0,
d � 1:6, (b) m0 � 5:0, d � 1:6, (c) m0 � 3:0, d � 1:0,
(d) m0 � 3:0, d � 2:0. (a), (c), and (d) show smoothed density
of points; panel (b) shows original points.
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Landers’ epicenter, (b) the ‘‘secondary’’ aftershocks after
the Big Bear earthquake, M � 6:4, which itself is the
largest aftershock of Landers, and (c) several ‘‘distant
aftershocks’’ that occurred immediately after Landers but
at large distance from the latter. Both Northridge and
Hector Mine aftershock clusters have not been associated
with Landers. We emphasize though the existence of a
distant Landers’ aftershock close to the future epicenter
of Hector Mine.

Conclusion and discussion.—We demonstrated the ex-
istence of statistically distinct clustered and nonclustered
parts in the observed seismicity of southern California. The
result, based on the bimodal joint distribution of the time
and space components of the nearest-neighbor distance �,
is robust with respect to the implied spatial dimension d of
epicenters [Figs. 4(a), 4(c), and 4(d)] and the catalog’s
lower magnitude threshold m0 [Figs. 4(a) and 4(b)]. This
finding has important implications for various problems,
aftershock detection being the most prominent one. The
physical interpretation of the reported separation as well as
its further applications will be considered in a forthcoming
paper.

An analog of Proposition 2 is readily proven for any
nearest-neighbor distance that depends multiplicatively on
spatiotemporal point location and multidimensional mark
m: � � �rdf�m�. It would be interesting to see how alter-
native definitions of � will alter the proposed clustering
analysis. A noteworthy modification is to replace the term
rd10�bm in the nearest-neighbor distance definition with
the observed number of earthquakes of magnitude m in the
respective spatial domain over a large time period; this will
reflect the realistic regional fault geometry and possible
spatial fluctuations of the magnitude distribution and may
lead to better cluster detection.
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FIG. 5 (color online). Aftershock identification for Landers
earthquake (June 28, 1992, M7.3). The figure shows all earth-
quakes that occurred after the Landers earthquake. Shaded
circles mark earthquakes identified as Landers’ aftershocks;
open circles mark the rest of the earthquakes.
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