
Fluids migration and dynamics

of a blocks-and-faults system

A.M.Gabrielov1;2, V.I.Keilis-Borok3;4, V.Pinsky5, O.M.Podvigina4;6, A.Shapira5;7,

V.A.Zheligovsky4;6

1Department of Earth and Atmospheric Sciences,

Purdue University, W.Lafayette, IN 47907-1397, USA

2Department of Mathematics,

Purdue University, W.Lafayette, IN 47907-1395, USA

3Department of Earth and Space Sciences,

University of California, Los Angeles, CA 90095-1567, USA

4International Institute of Earthquake Prediction Theory

and Mathematical Geophysics,

Russian Academy of Sciences,

79 bldg.2, Warshavskoe ave., 117556 Moscow, Russian Federation

5Geophysical Institute of Israel,

P.O.B. 182, Lod 71100, Israel

6Laboratory of general aerodynamics,

Institute of Mechanics, Lomonosov Moscow State University

1, Michurinsky ave., 119899 Moscow, Russian Federation

7International Seismological Centre,

Pipers Lane, Thatcham, Berkshire, United Kingdom RG19 4NS

1



Abstract. A two-dimensional mathematical model of block structures of the

Earth crust, which takes into account the in
uence of 
uids migrating along tectonic

faults, is presented in the paper. Results of numeric simulations based on the model

for a regular \brick wall" structure. Collective motion of blocks is determined by

geometry of the tectonic structure and by motion of con�ning blocks, and does not

depend on the 
uid regime. Spatial clustering of epicenters is observed. Patterns

of the simulated earthquake 
ows depend on the boundary conditions for 
uid.

A reasonable qualitative agreement of the simulated earthquakes catalog and the

catalog of the Geophysical Institute of Israel is found in simulations for the Israeli

seismic region.

Keywords: earthquake catalog, block model, fault, tectonic structure, 
uid, �l-

tration
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1 Introduction

Development and analysis of deterministic block models of the seismotectonic pro-

cess became a rapidly expanding area of research after Burridge and Knopo� (1967)

considered a one-dimensional slider-block model of a fault, and chaotic behaviour

was observed in its numerous one- and two-dimensional modi�cations by Bak et al.

(1987, 1988), Bak & Tang (1989), Carlson & Langer (1989a,b), Carlson et al. (1991),

Carlson (1991). Similar models have been studied by Otsuka (1972), Ida (1978), Nur

(1978), Cao & Aki (1985, 1986), Feder & Feder (1991), Rundle & Brown (1991),

Christensen & Olami (1992), Olami & Christensen (1992), Huang et al. (1992),

Narkounskaya et al. (1992), Myers & Langer (1993), Rice (1993), Shaw (1993),

Ben-Zion & Rice (1993, 1995), Ghertzik (1993, 1994, 1998), Gabrielov et al. (1994),

Hertz & Hop�eld (1995), Schmittbuhl et al. (1996). In the next generation models

of Bak et al. (1987, 1988), Bak & Tang (1989), Sornette & Sornette (1989), Ito &

Matsuzaki (1990), Ito (1992), Nakanishi (1990, 1991), Brown et al. (1991), Chen

et al. (1991), Lomnitz-Adler et al. (1992), Olami et al. (1992), Vasconcelos et al.

(1992), Akishin et al. (1998) (the lists do not pretend to be complete) dynamics of

block structures is represented by cellular automata.

The models exhibit chaotic behaviour and reproduce major empirical laws char-

acterising observed seismicity. While this kind of modelling is an important tool for

understanding of the processes in the Earth crust resulting in seismicity, the models

have some natural limitations. The original uniform Burridge & Knopo� (1967)

model is an idealisation of a single fault; it fails to reproduce aftershocks. To certain

extent this de�ciency is inherited by many subsequent models: commonly smooth

isolated faults are considered, no account of the block system geometry being taken.

This limitation is essential, because the geometry poses constraints on the possible

motion of blocks, geometric incompatibility (see Gabrielov et al. 1996) being a man-

ifestation of those. An open question remains, whether the complexity of seismicity,

the richness of seismic phenomena, and the fundamental regularities such as the

Gutenberg-Richter law are linked to fault segmentation and other heterogeneities,

or instabilities of the underlying inertial dynamics dominate the behaviour (see dis-

cussion in Rice, 1993; Cochard & Madariaga, 1994, 1996; Madariaga & Cochard,
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1994, 1996; Nielsen et al. 1995; Ben-Zion & Rice, 1995, 1997; Knopo�, 1996; Langer

et al. 1996; Rice & Ben-Zion, 1996; Robinson & Benites, 1995; Ben-Zion et al. 1999;

Lyakhovsky et al. 2001). The complexities in slip histories on a smooth fault can

be sensitive to the details of constitutive equations and physical mechanisms incor-

porated into the model (see Ben-Zion & Rice, 1997); the question is complicated by

the role of inadequate resolution in numeric simulations (see Rice, 1993; Ben-Zion

& Rice 1993, 1995, 1997; Rice & Ben-Zion, 1996).

A family of two- and three-dimensional models of block structure of lithosphere

have been developed at the International Institute of Earthquake Prediction Theory

and Mathematical Geophysics (IIEPT), Moscow (see Gabrielov et al. 1986, 1990,

1993; Rozenberg & Soloviev, 1997), enabling one to take into account the actual

shape of blocks constituting a tectonic region. (Note that while in the model of

Burridge and Knopo� (1967) and its modi�cations \blocks" were understood as

elements of the fault surface engaged in elastic interaction, in the IIEPT models

the notion of a \block" is an idealisation of crustal blocks.) These models give an

opportunity to carry out integral quantitative analysis of slow motions of an entire

tectonic region and to study dependence of the earthquake 
ow on geometry of the

fault system. They were employed in the study of seismicity of arti�cial regular block

structures (e.g. of the \brick wall" type, see Gabrielov et al. 1986, 1989, 1990, and of

a square region paved with square blocks of the same or di�erent sizes, see Maksimov

& Soloviev, 1996; Keilis-Borok et al. 1997; Rotwain & Soloviev, 1998), as well as

of structures re
ecting geometry of certain actual tectonic regions (see Gabrielov

et al. 1993; Gasilov et al. 1995, 1996; Sobolev et al. 1996; Panza et al. 1997;

Garianova & Rotwain, 1998; Soloviev & Rundquist, 1998; Rundquist & Soloviev,

1999; Ismail-Zadeh et al. 1999). While synthetic catalogs obtained by application of

these models to certain regions (see Gasilov et al. 1996; Sobolev et al. 1996; Panza

et al. 1997; Garianova & Rotwain, 1998; Soloviev & Rundquist, 1998; Rundquist

& Soloviev, 1999; Ismail-Zadeh et al. 1999) mimic well some general patterns of

observed seismicity, such as the Gutenberg-Richter law, reproduction of more subtle

features of spatio-temporal clustering of earthquakes (including the presence and

statistical distribution of foreshocks and aftershocks) remains problematic.
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In order to reproduce �ne statistical properties of real earthquake catalogs, one

should take into account various physical processes responsible for the observed

patterns of seismicity. A missing element in the \dry" tectonic fault models is 
uid,

migrating along faults. Importance of this factor in seismic processes is indisputable.

However, the integral in
uence of 
uids on tectonic processes is complex and not

suÆciently well understood so far. The goal of the present work is to study migration

of 
uids through the faults network and to explore its implications for the seismic

regime of a tectonic region.

On the one hand, 
uids are known to be one of the major factors in the crustal

dynamics, because they control the strength of crust (see Keilis-Borok, 1990a, 1994;

Gabrielov & Newman, 1994) via two distinct mechanisms: The �rst one is purely me-

chanical and is based on the fact that 
uid transmits pressure to the pore space. The

second one is of physico-chemical nature (see Scholz, 1990). The impact of 
uids on

geotectonic processes is delivered via such nonlinear e�ects as, for instance, decrease

of the permeable medium strength with an increase of pore pressure; degradation

of friction strength of rocks in the presence of 
uids; stress corrosion or Rhebinder

e�ect (i.e. loss of strength of solids in contact with some surface-active liquids);

chemical interaction with rocks. The nonlinearity can be strong; the e�ects may

act on fast time scales and they are associated with important mechanical insta-

bilities of lithosphere. For instance, rheological weakening can be responsible for

rock strength reduction by a factor up to a million within several years (see Keilis-

Borok, 1990a). Hence, 
uids play a signi�cant role in diverse processes of earthquake

preparation and triggering (see Nur & Booker, 1972; Nur, 1973; Johnson et al. 1974;

Segall & Rice, 1975; Rice & Simons, 1976; Ben-Zion, 1990; Nikolaevskii, 1990, 1996;

Rice, 1992; Yamashita, 1997; Miller et al. 1999). Numerous phenomena involving


uids and re
ecting the state of crust have been documented, some of which can

potentially be useful for earthquake prediction (see reviews Roelo�s, 1988, 1996).

On the other hand, characteristic time scales of migration of 
uids are interme-

diate between those of tectonic motion of blocks and seismic waves. An analytical

modelling of 
uid �ltration along a system of \dry" and \wet" porous blocks consti-

tuting a plain fault (see Barenblatt et al. 1983) has shown that propagation of the
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critical 
uid pressure occurs with the speed comparable to the speed of migration

of earthquake epicenters along faults. Similarity of the velocity of propagation of

swarms' precursors and that of 
uid di�usion was found in seismicity observations

(see Caputo, 1992). Thus consideration of 
uids is important for explanation of

long-range interaction. (While action at a distance can be regarded as a conse-

quence of the assumption that the entire crust is in a self-critical state (see Scholz,

1991), and it can be modelled by cellular automata approximation of interaction of

an array of slider blocks (see Turcotte, 1997), consideration of a speci�c physical

mechanism (or mechanisms) responsible for this phenomenon makes the model more

realistic.) It can be important for replication of the characteristic spatio-temporal

grouping of seismic events in the model.

2 A two-dimensional mathematical model of the

Earth core block structure, involving 
uid �l-

tration through the faults network.

Our model (also discussed by Zheligovsky & Podvigina, 2002) is based on the as-

sumption that the lithosphere can be regarded as a complex hierarchical block struc-

ture (see Alekseevskaya, 1977; Sadovsky et al. 1982, 1984; Sadovsky & Bolkhovitinov,

1990; Keilis-Borok, 1990a,b, 1994; Gabrielov & Newman, 1994). Blocks are sepa-

rated by relatively thin and less consolidated transition zones, such as tectonic faults

and lineaments, where most earthquakes occur. In what follows these interblock

transition zones are indiscriminately referred to as \faults". These concepts are

idealised: blocks are considered in the model as absolutely rigid two-dimensional

polygons interacting via elastic forces, which act on their one-dimensional bound-

aries. Each fault is interpreted as a one-dimensional porous medium, along which

�ltration of 
uids is possible. Fluids can proliferate to adjacent or crossing faults. A

stress drop (interpreted as an earthquake) occurs when stress exceeds the strength

at some point of a fault. This results in fast relocation of blocks, which can cause

subsequent failures. Normal stress arising due to the relative displacement of blocks

acts on the matrix of the porous medium, which causes variation of porosity and

a build-up of 
uid pressure gradients. Fluid pressure a�ects the motion of blocks
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and weakens faults. As a result of an earthquake, fractures �lled in with 
uids can

emerge in a fault. Fluid sources and sinks model production and consumption of


uids in geochemical processes. Phase transitions are not considered, 
uids are sup-

posed to be homogeneous and uniform, and thereafter we refer to them in singular.

Porous medium is assumed to be saturated. E�ects due to heat production and

transfer are also neglected.

The model is comprised of equations of blocks motion, equations of 
uid migra-

tion along the network of tectonic faults, criteria for triggering and termination of

earthquakes, and formalisation of their impact on the block system. Our model is a

generalisation of the model of Gabrielov et al. 1990.

Two time scales are introduced in the model: a geological time scale, on which

slow tectonic motion of blocks takes place, resulting in accumulation of elastic energy

and leading to earthquakes; and a seismic time scale, on which fast motion of blocks

takes place during earthquakes, resulting in partial drop of the accumulated stress.

The processes proceeding in slow time, namely tectonic loading and migration of


uids, are frozen in fast time.

2.1 Motion of blocks

Blocks are regarded as absolutely rigid polygons, which can move in horizontal

directions and rotate about the vertical axis. (Implications of block rotation are

discussed by Nur et al. 1989; Li et al. 1990.) Block boundaries are identi�ed

with fault segments. The density of each block is constant, it can vary for di�erent

blocks. The motion of blocks satis�es the Newton's law. Displacements of blocks

are supposed to be in�nitely small relative to their size, and equations of motion are

linearised in displacements and in angles of rotation. The motion of blocks is caused

by prescribed motion of the boundary blocks con�ning the tectonic block structure.

Denote the center of mass of the i-th block by (Xc
i ; Y

c
i ). Let ri = (xi; yi) be the

vector of displacement of the center of mass of the i-th block and let �i be the angle

of rotation of this block about the vertical axis. Displacement of the i-th block at a

point (X; Y ) is

�i(X; Y ) = (xi � (Y � Y c
i )�i; yi + (X �Xc

i )�i):
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Dissipation of energy in the system is modelled by \viscous" forces, proportional

to the rate of displacement. The density of the viscous force acting on the i-th block

is

qi(X; Y ) = ��i
d

dt
�i(X; Y ):

Viscosity coeÆcients �i are supposed to be constant for a given block. Viscous

damping must be introduced into the model to avoid the purely oscillatory kind of

motion, which sets in if the motion of blocks is primarily controlled by elastic forces

considered next. For very large blocks it may model, for instance, interaction of a

block with the partially melted base.

We now discuss interaction of two blocks along their common fault segment.

Two kinds of forces are considered: elastic stress and pore pressure. In the course

of relative motion of natural blocks their mutual traction along the joint boundary

causes deformation of the blocks and thus accumulation of elastic energy within

their volumes. We introduce elastic forces to model this accumulation of energy.

Consider a fault segment, which is a boundary between the i-th and j-th blocks.

Let et be a unit vector parallel to the fault segment, whose direction agrees with

the clockwise orientation of the j-th block boundary, and let en be the unit outward

normal to the j-th block. (Directions of et and en are reversed when the i-th and

j-th blocks are interchanged.)

Consider a point (X; Y ) at the common boundary between the i-th and the j-th

blocks. Displacement �i;j(X; Y ) of the i-th block relative to the j-th block at this

point is �i;j(X; Y ) = �i(X; Y )��j(X; Y ). In the model, this relative displacement

results in elastic interaction of blocks. The density of the elastic force acting on the

i-th block is

�(X; Y ) = �tet + �nen; (1:1)

where

�t = �Kt(�i;j � et � Æ); (1:2)

�n = �Kn(�i;j � en � sh): (1:3)

Here Kt; Kn are elastic coeÆcients in the directions along the fault and normal to

it, respectively; Æ(X; Y ) is unelastic displacement along the fault (these quantities

are de�ned at the end of Subsection 2.3); �n(X; Y ) is normal stress in the fault;
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h(X; Y ) is the relative width of fractures �lled in with 
uid (see Subsection 2.2); s

is a scaling factor; and �t(X; Y ) is tangent stress. For simplicity, elastic coeÆcients

Kt and Kn are supposed to be constant at each fault segment, but they can vary for

di�erent segments. �n > 0 corresponds to compression, and �n < 0 { to extension.

These equations are valid for in the elastic (non-broken) state of the fault; we call

this state basic.

The contribution of the elastic force � and the pore pressure p is weighted by the

porosity m of the fault medium. (Constitutive laws governing the values of porosity

are considered in the next section). Thus, the density of the total force acting on

the i-th block at the point X; Y of the fault, is f(X; Y ) = (1�m)� +mpen.

Motion of the i-th block in slow time satis�es the Newton's law (see e.g. Landau

& Lifshitz 1976):

Mi

d2

dt2
ri = Fi; Ii

d2

dt2
�i =Mi; (2)

where

� Mi is the mass of the i-th block;

� Ii is the moment of inertia of the i-th block about the center of mass;

� Fi is the total force acting on the i-th block:

Fi =
Z
@Bi

f(X; Y )dl +
Z
Bi

q(X; Y ) dxdy

(integration is over the block boundary in the �rst integral, and over the area of the

block in the second one);

� Mi is the total angular momentum of forces acting on the i-th block about the

center of mass.

2.2 Fluid migration along the network of faults

Each fault segment is regarded as porous medium, which can be fractured. Condi-

tions for opening and closure of fractures in the model will be discussed in the next

subsection. Porous and fractured media are characterised by di�erent values of the

porosity mi and permeability ki (i = 1 for the porous, and i = 2 for the fractured

medium).

Migration of 
uid along the fault segment satis�es the Darcy's law (see Kochina,

1962; Nikolaevskii et al. 1970; Bear, 1972; Barenblatt et al. 1972, 1983, 1984; Fyfe
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et al. 1978; Basniev et al. 1993; Nikolaevskii, 1996):

w = �
k

�

@p

@l
: (3)

Here w is the rate of �ltration; k is the total permeability of the fault: in the

absence of fractures k = k1 is permeability of the porous medium, if fractures are

open k = k1 + k2; � is the 
uid viscosity; l is the natural parameter on the fault

segment (i.e. the distance from a point on the segment to one of the endpoints); p

is the pore pressure (in the presence of fractures, 
uid pressure in the fractures is

equal to the pore pressure).

Constitutive equations for k, m, � and 
uid density � must be speci�ed. The

simplest relations were considered, in order to avoid arti�cial e�ects due to excessive

complexity of the assumed governing relations, as well as to simplify computations.

The following empirical relations have been assumed (see Nikolaevskii, 1996):

ki = ki;0(mi=mi;0)
d;

where mi is porosity of porous (i = 1) or fractured medium (i = 2).

m1 = m1;0e
��m(1�m1)�e� (4:1)

(here

�e� = �n � p+ �p (5)

is e�ective normal stress, �p is a normalisation constant, equal to the average initial

pore pressure; it can be also regarded as representing compressive load in the model),

m2 = h=(1 + h) (4:2)

(h = 0 initially and when there are no fractures; h > 0 is interpreted as the width

of fractures relative the width of the unfractured fault zone; for fractured medium,

porosity (4.2) due to fractures is de�ned in line with the general de�nition as the

ratio of the volume of fractures to the total volume);

� = �0e
��p; � = �0e

��p

Here d; �0; �0; ki;0; mi;0; ��; ��; �m are constants. Power laws with d = 2 or 3 were

considered for permeability. Constants ki;0; mi;0; �m can vary for di�erent fault seg-

ments, but for the sake of simplicity they are not supposed to depend on the point

of a segment.
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Filtration of 
uid satis�es the mass conservation law

@

@t
((m1 + h)�) +

@

@l
(�w) = Q;

where Q(l; t) is the prescribed rate of 
uid production or consumption in a source

(respectively, sink) at a point l of the fault. Following Barenblatt et al. (1972,

1983), substitute here the rate of �ltration (3) to obtain a nonlinear parabolic partial

di�erential equation for the pressure p:

@

@t
((m1 + h)�) =

@

@l

 
�
k

�

@p

@l

!
+Q: (6)

Boundary conditions at a point of the fault intersection or junction express the

continuity of pressure and the mass conservation for the 
uid passing through the

point. Consider a point of intersection or junction of several fault segments. For the

i-th fault segment, for which it is an endpoint, let li denote the natural parameter

on the segment, li = 0 being this endpoint. Then the boundary conditions take the

form

lim
li!0

p(li) = lim
lj!0

p(lj) 8i; j (7:1)

(continuity of the pore pressure when passing from the i-th fault segment to the

j-th one; note that this implies under our assumptions that the 
uid density is also

continuous);

�
X
i

wijli=0 = q (7:2)

(mass conservation for the 
uid passing through the point). Summation is car-

ried out here over all fault segments which end at this point, wi is the rate of

�ltration on the i-th fault segment, and q(t) is the prescribed rate of 
uid produc-

tion/consumption at the point.

Some points can be assumed to be attached to unlimited basins of 
uid with a

prescribed dependence of pressure on time pb(t). At such points the condition

p = pb(t): (7:20)

is therefore satis�ed instead of (6) or (7.2). All such points are regarded as endpoints

of fault segments.
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2.3 Seismic events

The fault segment retains its elastic properties as long as certain strength thresholds

are not exceeded. We introduce two conditions for the elastic behaviour, based on

Coulomb's law (see Kasahara, 1981; Scholz, 1990):

�e� > �C (8:1)

j�tj < A�e� +B (8:2)

Here C is the extension strength threshold; A and B determine the shear strength

threshold. (The three constants are positive, they can vary for di�erent fault seg-

ments.)

When elastic stress at a fault segment exceeds the medium strength, i.e. (8.1)

or (8.2) are violated, a seismic event resulting in stress drop is registered in the

model (cf. with Gabrielov et al. 1990). The slow time processes are frozen, and the

fast time motion of the system begins. We consider two kinds of failures: extension

fracture, occurring when �e� is negative, and shear rupture, occurring when it is

positive.

Extension fracture. At the part of the fault segment where �e� < 0, fractures

emerge and they are �lled in with 
uid. After this elastic stress vanishes, and

henceforth

�e� = �t = 0: (9:1)

Shear rupture. At the part of the fault segment where �e� > 0, slip along the

fault begins. The e�ective normal stress remains una�ected, and the tangent stress

is replaced by dynamic friction, so that at the broken part of the segment

j�tj � a�e� : (9:2)

Here a satis�es 0 � a � A. It is assumed to be constant on each fault segment.

Direction and magnitude of �t in the regime of dynamic friction is determined

from the following conditions. Consider the tangent component of the relative dis-

placement rate,

vt =
d

dt
�i;j(X; Y ) � et: (10)
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If vt 6= 0, the magnitude of dynamic friction is set to the maximum possible value,

j�tj = a�e� , and the sign of �t is opposite to the sign of vt. Otherwise (vt = 0),

friction is determined from the requirement that it sustains (10), or if the upper

bound (9.2) is too small to make this possible, its direction is against the relative

acceleration of blocks at this point due to the action of all other forces, and its

magnitude is set to the maximum permitted value. (Note, that if (10) holds on

several fault segments, the values of �t must be determined from the respective set

of equations. This is considered in more detail in section 2.4 .)

Regime of dynamic friction terminates at the end of the earthquake (conditions

for which will be de�ned below), or when the fault opens, �e� < 0, whichever

happens �rst.

The change of stresses, discussed above, causes motion of blocks in fast time. In

the beginning of an earthquake zero velocities of the fast time motion are assumed.

The motion of blocks in fast time satis�es the second Newton's law (2), where Fi

and Mi are the sums of the following forces and their moments:

� elastic stress �, calculated from (1) for the parts of fault segments in the basic

elastic state, and from (9) for the parts of fault segments in broken states of either

kind;

� the force of viscous dissipation of energy in the block

q(X; Y ) = ��ei
d

dt
�i(X; Y );

where �ei is the viscosity coeÆcient, which can be di�erent from the slow time

viscosity coeÆcient;

� pore pressure p of the 
uid, which is determined during an earthquake at every

point from the condition that the local content of the 
uid remains constant (
uid

migrates only on the slow time scale), taking into account (1.3), (4) and (5). This

translates to

m1� = const; (11:1)

if the fault is not open (�e� > 0); otherwise, p and h are determined from the

conditions (9.1) and

(m1 + h)� = const: (11:2)
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Due to fast time relocations of blocks, stress changes. Consequently, the strength

threshold (8) can become surpassed at parts of fault segments which have not yet

failed, or e�ective normal stress �e� can change sign. The new failures are treated

in the same way, as the ones which have failed at the beginning of an earthquake. If

�e� becomes positive at any point where the fault is open, it closes and the regime

of dynamic friction sets in.

The fast time motion of blocks continues till the system arrives to an equilibrium

state. After it is reached, the earthquake is declared to have terminated, and faults

heal everywhere, where they failed but did not open. Unelastic displacements Æ

along the fault, constant in the slow time, are reset, so that the new tangent stress

(1.2) equals tangent stress �t at the equilibrium: Æ = �i;j � et � �t=Kt. (Initially

unelastic displacements are set to zero.)

An earthquake magnitude M is determined as1

M =M0 + log10

Z
ÆEdl; (12)

where M0 is a normalisation constant, integration is performed over all failed parts

of fault segments, and ÆE is the elastic energy drop,

ÆE = (�+ � Æ+et) � �
+ � (�� � Æ�et) � �

�

(the superscript � refers to the quantities just before the beginning of an earthquake,

and the superscript + { to those just after its end). An alternative magnitude M 0

is also considered, also de�ned by (12), where however integration is performed

over the entire faults network. The point, where the initial failure happened at the

beginning of an earthquake, is regarded as its epicenter.

After an earthquake ends, the slow time evolution of the system resumes from

the positions at the end of the earthquake, and with the velocities at the end of

the slow time motion right before the earthquake. If �e� becomes positive on an

open fault during this evolution, the fault heals, and non-elastic displacement Æ is

calculated from the condition that the tangent stress (1.2) vanishes: Æ = �i;j � et.

1For real earthquakes M =M0 +
2

3
log

10
E. However, since the model is two-dimensional, it is

natural to assume a unit coeÆcient in front of the logarithm.
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2.4 Numerical algorithms

Spatial and temporal discretisation.

Each fault segment is divided into a number of intervals of equal (for a given

segment) length, not exceeding a prescribed threshold �. These intervals are referred

to as \cells", and their endpoints { as \nodes". In particular, endpoints of all fault

segments are nodes. All physical �elds are evaluated at nodes. The partitioning

is employed for the spatial discretisation in (6), integration of forces and moments

in (2), and examination of conditions for failure (8). Epicenters are also de�ned

in terms of nodes: the node which failed at the start of an earthquake represents

its epicenter (if several such nodes failed, the one with the maximum stress drop is

selected).

Finite di�erences (see Gear, 1971; Press, 1992) are used for the solution of dif-

ferential equations (6) and (2). First derivatives in the �rst term at the r.h.s. of

(6) are obtained at the centers of cells by a standard rule: if a cell is de�ned by the

inequality l0 � l � l1, then

@p

@l

 
l0 + l1
2

!
=

p(l1)� p(l0)

l1 � l0
: (13)

Since discrepancy of this formula is quadratic in jl1� l0j, the values can be used for

evaluation of the second derivative at nodes by the same rule. However, we use a

slightly di�erent scheme, which guarantees conservation of the total 
uid mass in a

closed fault network.

Let a \
uid cell" be de�ned as a subinterval of a fault segment between the

centers of two adjacent cells (hence the center of a 
uid cell is a node). From (13)

and the Darcy's law (3) one obtains �ltration rates at the endpoints of a 
uid cell,

and hence �nds the balance of 
uid in the cell (taking into account the rate of 
uid

production/consumption Q). Assuming constant rates of 
uid �ltration through

boundaries of the 
uid cell during a time step, and normalising the variation of 
uid

content by the length of the 
uid cell, calculate the 
uid content m� at the center

of the 
uid cell at the next moment of time. This procedure is equivalent to the use

of a second order spatial �nite-di�erence scheme for (6).

Discretisation of the boundary condition (7.2) for (6) guarantees conservation of
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the total 
uid mass migrating through segment endpoints. Consider a node which

is an intersection or junction of two or more faults, and de�ne a 
uid cell, with the

center at the node, as the union of all half-cells adjacent to this node. One �nds

the rate of �ltration from (13) and (3) and determines the balance of 
uid in the

cell (taking into account the rate of 
uid production/consumption q at the central

node). Assuming that the rates of 
uid �ltration through the boundaries remain

constant during the time step, and normalising the variation of the 
uid content by

the total length of half-cells constituting the 
uid cell under consideration, one �nds

the 
uid content at the central node at the next moment of time.

Computational scheme.

Suppose all the quantities are known. The following operations are carried out

to make the next time step:

1. Integrate (2) to �nd new positions of blocks and their velocities.

2. In slow time: integrate (6) to �nd 
uid content (11) at every internal (non-

boundary) node at the new moment of time.

3. Using boundary conditions (7), �nd 
uid content at every boundary node.

4. Calculate new relative displacements of blocks at each node.

5. Using (1), (4) and (11), calculate new values of normal stress, pore pressure,


uid density and porosity at each node.

6. At each open node check the condition of closure of fractures �e� > 0. If it is

satis�ed, assume the basic elastic state of the node at slow time following healing, or

assume dynamic friction at fast time; hence, reevaluate normal stress, pore pressure,


uid density and porosity, and at slow time { the non-elastic displacement Æ.

7. In fast time at each node in the state of dynamic friction check the condition

of fault opening �e� � 0. If it is satis�ed, assume this state of the node, assign a

zero value to normal stress, and reevaluate pore pressure, 
uid density and porosity.

8. Calculate new tangent stress at each node taking into account its state (using

(1.2) or (9) ).

9. At each node (except for those in the state of dynamic friction at fast time)

check the condition (8) of failure. If it is satis�ed, in slow time declare an earthquake

and switch to fast-time computations. Determine the types of occurring failures and
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reevaluate the values of stress from (9), as well as of pore pressure, 
uid density and

porosity.

10. At fast time check the condition of termination of an earthquake (i.e. that

block velocities, total forces and moments acting on each block do not exceed pre-

scribed thresholds) If it is satis�ed, �nd the new non-elastic displacements Æ at all

nodes which are in the state of dynamic friction, and return to computation of the

slow time evolution.

Determination of dynamic friction forces.

To determine dynamic friction in (9.2) we employ the following procedure. As-

suming all forces to be constant one can �nd the time interval dt0 > 0, after which

the tangent component of the relative displacement rate will vanish at the �rst of

the nodes in the state of dynamic friction. If dt0 is less than the standard time step

dt, then the Euler's time step of the length dt0 is made. (This test is performed

at each time step, while nodes in the state of dynamic friction exist.) Suppose the

condition (10) is satis�ed at N nodes. The following heuristic algorithm is used to

determine the forces of friction at these nodes:

0. Find the upper bounds Fi (the r.h.s. of (9.2) ) for the friction forces. The

index i refers to nodes where the friction forces have to be determined.

1. Construct the system of equations in unknown friction forces fj. An equation

for the i-th node expresses the condition that the tangent acceleration along the

fault vanishes; it is of the form

NX
j=1

`jifj = �i: (14)

Since necessarily `ii 6= 0, without any loss of generality assume `ii > 0.

2. If for some index i

�i >
NX
j=1

j`ji jFj;

then fi = Fi; if

�i < �
NX
j=1

j`ji jFj;

then fi = �Fi. Substitute these values to the remaining equations and return to

step 1 for the reduced system of equations.
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3. If the system of equations splits into several independent subsystems, each

one is treated separately.

4. Find a solution ~fi to the reduced subsystem (14). If j ~fij � Fi; 8i, go to step

6.

5. Find (and store) the index i, for which the ratio j ~fij=Fi is maximum, and set

fi = Fisign ~fi. Substitute this value to the remaining equations and return to step 1

for the reduced system.

6. If all friction forces fi assigned at step 5 are directed opposite to the accel-

eration along the fault at the respective nodes, the solution for the subsystem is

obtained.

7. Discard all the values assigned at step 5 and consider the original independent

(sub)system of equations, before step 5 was applied for the �rst time. Construct for

it an auxiliary system of ordinary di�erential equations

d�i
d�

= 
i

0
@�i � NX

j=1

`ji�j

1
A ; (15)

where


i = Fi � �i; if �i >
NX
j=1

`ji�j;


i = Fi + �i; if �i <
NX
j=1

`ji�j:

By construction, the steady state of this dynamical system is a solution to the

problem, possessing all required properties.

8. Solve (15) numerically. In case this step is performed for a given subsystem

for the �rst time, assume zero initial conditions; otherwise continue the trajectory.

Due to the presence of factors 
i at r.h.s. of (15), j�ij < Fi for all � > 0. Since

a solution of the original problem was not obtained at step 5, lim�!1 j�ij = Fi for

at least one index i. As soon as the inequality Fi � j�ij < � is satis�ed for some i,

stop solving (15) and set fi = Fisign�i for this index; substitute this value to the

remaining original equations (14) and apply steps 1-6 to the reduced system. Here

� is a prescribed small positive number; its value is decreased each time when we

return to this step for the given subsystem.

In practice, one needs to solve (15) very rarely, and thus the algorithm allows to

determine unknown friction forces fast.
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3 Results of simulations for the \brick wall" struc-

ture

We considered a two-dimensional model of an arti�cial regular block structure,

shown on Fig.1. The top and bottom con�ning blocks are moving with the same

constant speed in opposite directions (the upper block to the right, and the lower

one to the left; here and in what follows directions \up", \down", \left" and \right"

refer to the orientation of Fig.1). The left and right con�ning blocks are rotating

clockwise with the same constant angular velocity coherently with the motion of

the top and bottom con�ning blocks. The faults adjacent to con�ning blocks are

called external; all other faults are internal. This is the so called \brick wall" block

structure, studied by Gabrielov et al. 1990.

Initially the pore pressure p and the 
uid content m� are the same at all nodes.

Four variants of simulations were carried out, di�erent in the 
uid boundary condi-

tions:

(a) 
uid is locked in a closed faults network;

(b) the faults network is connected to an unlimited basin of 
uid at a constant

pressure, equal to the initial one, at the upper left and lower right corners;

(c) a constant pressure gradient is maintained: the faults network is connected at

the upper left corner to an unlimited basin of 
uid at a constant pressure, equal

to the initial one, and at the lower right { to another unlimited basin at a smaller

constant pressure;

(d) no 
uid is present.

Diagrams, labelled on Figures by (a)-(d), refer to the 4 variants, respectively.

Each of these simulations require more than a week of CPU time of a DEC Alpha

workstation.

The following constants, same for all fault segments, were used in the reported

simulations: M0 = 4; D = 2; �m = 0:005; �� = 10�4; �� = 10�5; � = 0:1; �e =

0:5; Kt = 0:6; Kn = 1; a = 0:1 . The values of constants, de�ning strength threshold,

are the same as in Gabrielov et al. 1990: A = 1; B = 0:5; C = 0:5 . A power law

with d = 2 is assumed for permeability. The horizontal side of each full-size block

is cut into 20 cells, and of each of the 3 blocks of the half-size { into 10 cells; each
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vertical side { into 6 cells. All cells are of the same size. Simulations at an interval

of 2000 time units are performed. The assumed constants scale up to tectonic blocks

of the 200 km � 60 km size, the cell length (and hence the precision of the epicenter

location) 10 km, the time unit is of the order of several years, relative velocity of

motion of the upper and lower con�ning blocks 1 cm/year. No important di�erences

were found in the behaviour of the block system in additional simulations with a

twice �ner spatial discretisation (of the same structure with the same values of

constants) at an interval of 1000 time units.

Fig.2 illustrates the simulated earthquake 
ow. There are 1177, 3200, 5768 and

2226 events with M � 4 in the synthetic catalogs for the variants (a)-(d), respec-

tively. Temporal behaviour of the structure is non-stationary in all variants (at least

on the considered time interval), perhaps except for (c). In the variant (a) average

seismicity is monotonously increasing, although the 
ow of strong earthquakes may

have saturated and become stationary. In variants (b) and (d) locally maximum

magnitudes grow in time. This growth may be related to compression in horizon-

tal direction, which each layer of blocks experiences due to rotation of the vertical

con�ning blocks, and in variants (a)-(c) { also with the peculiarities of the 
uid

regime.

The magnitude M , used on Fig.2, correlates for M > 4 (or M > 5 in variant

(a) ) with M 0, and at these magnitude intervals M � M 0 (see Fig.3; M 0 > M for

large M). There is no correlation of the magnitudes for small seismicity. Since the

motion of blocks is coherent, in most cells the amount of the stored elastic energy

decreases during a seismic event. and hence in most cases M 0 > M . In large events

the number of cells, broken during the event, is large. Moreover, the fast-time

motion of blocks is large in amplitude, causing to break many cells with initially a

subcritical amount of elastic energy. Thus only those cells remain unbroken, where

a small amount of elastic energy is stored, and their number is relatively small. This

explains why M 0 �M for large events.

The magnitude M is employed in what follows. Graphs of the released seismic

energy (Fig.4) are similar for variants (b) and (d). Their parabolic shape also

indicates non-stationarity of seismic 
ows on the considered time interval.

20



In variants (b)-(d) the Gutenberg-Richter law log10N(M) � ��M+� is satis�ed

with � =0.7{0.8 (Fig.5). A non-regular shape of the histogram in variant (a) and

the minor value of the coeÆcient � in the remaining variants can be related to

non-stationary of the simulated earthquake 
ows.

Figs. 6-10 illustrate spatial distribution of epicenters in synthetic catalogs. The

cell length serves as a unit for the x coordinate along the horizontal axis, i.e. labels

of axes on the Figures display the number of nodes along a horizontal fault. His-

tograms of pairs (xi; xi+1) of horizontal coordinates of epicenters of all consecutive

earthquakes are shown (Fig.6), as well as histograms of pairs of consecutive earth-

quakes at each horizontal fault (Fig.7-10). The number of pairs at a given cell of

a histogram is gray-scale coded (zero pairs { white color, the maximum number {

black color).

Two classes of regions of an increased density of distribution of the pairs of

epicenters can be seen on Fig.6: (1) horizontal and vertical lines corresponding

to the values of xi and xi+1, which are multiples of 10, and (2) two subdiagonal

lines jxi � xi+1j = 1. Clustering of the �rst class is related to a well-known fact

that epicenters tend to be located near points of faults intersection or junction.

The second class reveals the spatial correlation of consecutive earthquakes: the

next earthquake tends to occur in a node adjacent to the one where the previous

earthquake has occurred. These patterns persist if a sequence of earthquakes with

epicenters on a given horizontal fault is considered (with the exception of internal

horizontal faults in the variant (d) where the number of earthquakes is very small),

as well as if earthquakes with M � 4 are considered, though in this case clustering

of pairs (xi; xi+1) near the diagonal is less pronounced. The degree of earthquake

clustering in the aforementioned regions varies for di�erent variants, and it is less

pronounced for the internal horizontal faults than for the external ones. This can

be attributed to the fact that in all variants the number of earthquakes on internal

horizontal faults is smaller than the number of those on the external horizontal

faults.

In variants (b) and (d) inhomogeneity of the earthquake locations is noticeable.

There were practically no earthquakes at the bottom fault with epicenters in the
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intervals xi � 5 and 76 � xi � 99 (Fig.7), and at the top fault { in the intervals

7 � xi � 26 and xi � 102 (Fig.10). This can be explained by a common pattern

of collective motion of blocks. Displacements and rotations of individual blocks are

exaggerated on Fig.11 (as a result, blocks near vertical boundaries are displaced one

relative to another in the horizontal direction). Respective diagrams for variants (c)

and (d) are not shown, since they are visually identical to Fig.11 (b).

The same kinematic mechanism is responsible for the same pattern of displace-

ments of blocks in all variants. Due to rotation of the right con�ning block, the

upper part of the right external vertical fault opens, implying that normal stress

acting on the upper rightmost block vanishes there, which causes clockwise rotation

of that block. Similarly, all blocks near vertical boundaries rotate in the clockwise

direction. This causes compression and relocation of internal blocks. As a result,

layers take an S-shape form. Consequently, the upper horizontal external fault opens

in the left part, and the lower horizontal external fault { in the right part, and there-

fore zones of seismic quiescence emerge on these faults. Thus earthquakes happen

in the quiescence zones only in the beginning of the evolution of the block structure.

Non-stationarity of the seismic 
ow can be attributable to this pattern of collec-

tive motion of blocks. As the time goes on, layers of blocks increasingly bend. This

causes an ongoing increase of normal stress at the places of contact of the top and

bottom layers with the top and bottom con�ning blocks. Consequently, the growing

strength thresholds make it possible to sustain increasing tangent elastic stress. The

latter are growing due to the motion of the con�ning blocks. This results in a steady

increase of maximum magnitudes in time. Thus, the observed non-stationarity of

seismicity is related to geometric incompatibility (see Gabrielov et al. 1996) of block

motions. In natural block systems it is controlled by the strength of blocks: when

it is exceeded, blocks break with emergence of new transverse faults. Collapse of

blocks is not allowed in the present model.

Qualitative dissimilarity in the observed seismicity patterns and in displacements

of blocks in (a) and in the three other variants owes to di�erence of their 
uid

regimes. Rotation of the left con�ning block causes compression in the left exter-

nal vertical fault near upper vertices of adjacent internal blocks, and formation of
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fractures �lled in with water near lower vertices. The same kinematic mechanism

acts near the right external vertical fault: fractures �lled in with water emerge there

near upper vertices of blocks. Fluid, concentrating in these pockets, is partly pressed

out of inner vertical faults due to compression of layers of blocks in the horizontal

direction by the left and right con�ning blocks. In variants (b) and (c) it is also

sucked in from the unbounded basins, to which the network of faults is attached (by

the end of simulations the total amount of 
uid in the faults system is about twice

larger in (b) and (c), than the initial one; in (b) it is larger, than in (c) ). These

e�ects are of course not found in variant (d) with no 
uid (which is equivalent to a

constant pressure). Since in variant (a) the total amount of 
uid is conserved, its

out
ow to pockets near vertical external faults causes an overall decrease of pressure

in the faults system; hence 
uid pressure in the pockets is less capable to compensate

moments of normal stress exerted on blocks of the structure by the left and right

con�ning blocks. This results in larger angles of rotation of blocks in this variant,

than in the remaining three. Variant (a) is also distinct in the following respect:

An overall decrease of pressure is equivalent to increase of strength thresholds. For

this reason an average number of earthquakes of magnitude above a certain level

per unit time is smaller in (a), than in other variants, and the average magnitude is

higher (see Fig.2).

Large negative normal stresses appeared in virtually all runs for the model brick

wall structure near the blocks which have rotated most, near the left and right

boundaries (see Fig. 11). They are unphysical and suggested introduction of tensile

fractures into the model, though normally no natural earthquakes of this type occur.

Being arti�cial, with a large number of orthogonal faults, geometry of the brick wall

structure is apparently responsible for occurrence in the model of this unusual in

seismology type of seismic events. Their number is not large: tensile fractures occur

in the beginning of simulations at the faults, where relative angles of rotation of

blocks are large, and the fractured faults do not heal in the subsequent evolution

of the block system. Thus, they can be also regarded as representing an initial

transitional stage of adjustment of the model { by contrast, natural faults in the

Earth core evolve in the saturated regime.
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4 Results of simulations for the Israeli seismic re-

gion

The block structure used in the model.

We have used in simulations a conventional pattern of the Sinai Subplate bound-

aries (see Salamon et al. 2003; Fig. 12). On the Figure one can see the Dead

Sea Transform (DST), which accommodates the motion between Arabia and Sinai

(northeastern tip of Africa), the convergent Cypriot Arc (CA) at the suture be-

tween Anatolia and Sinai, and the Suez Rift (SR), which carries some divergence

between Africa and Sinai. While clearly these are plate boundaries, there is al-

most no morphological, tectonic or seismic evidence of the northward continuation

of SR towards the CA, to completely encircle Sinai Subplate and de�ne it as a

microplate. Consequently, to model seismicity of the Sinai Subplate we have cho-

sen an approximately triangular region with the Eastern boundary along the DST

and the Southern boundary - along the SR. The western boundary of the selected

block, crossing the Mediterranean Sea, passes by the epicenter of the 1997 ML=5.9

deep earthquake. Possibly the western boundary should be drawn further to the

West, in accordance with the seismicity pattern which links Northern Africa with

the Cyprian Arc. But in this case it is diÆcult to \close" intraplate blocks of the

Sinai Subplate, corresponding to the Carmel-Fari'a (CA) tectonic system and the

Negev Shear Zone, important for the area seismicity evaluations. According to the

existing paradigm (see Ben-Menahem & Aboodi, 1981; Jo�e & Garfunkel, 1987)

Africa moves towards Anatolia at � 1 cm/yr (see Ginat et al. 1998). Arabia moves

towards Anatolia with the velocity � 2:5 sm/yr. There is no consensus about the

velocity of the Sinai Subplate itself. Long-term (on the scale of millions of years)

indications suggest that the relative velocity of the shift between the Dead-Sea fault

boundaries is � 1 cm/yr. Thus, the south-western boundary should move to the

North-East with a 1.5 cm/yr velocity. Many GMT measurements were performed in

the region in the last decade but no reports about the current plate motion velocity

are yet available.

Other parameters used for computations are as follows. According to gravimetry

and magnetic measurements (see Rybakov et al. 1999, 2002), the Sinai Subplate
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density varies from 2.5 g/sm3 at the upper crust to 3.3 g/sm3 in the upper mantle.

The Moho depth varies from 18 km to the West of the Dead Sea Fault to 35 km to

the East, from 32 km in the South to 25 km in the North (see Ben-Avraham et al.

2002); the width of the Dead Sea Fault varies from 2 to 12 km.

Interpretation of results.

The model computations yielded a synthetic earthquake catalog (Time, Latitude,

Longitude, Magnitude), which we compare to the real seismic catalog, compiled at

the Geophysical Institute of Israel (GII) in 1981-2002. It was assumed in compu-

tation of the synthetic catalog that the system of faults was closed and it did not

contain 
uid sources or sinks. Figure 13 presents Magnitude/Time cross-section

for the synthetic catalog. Almost stationarity of the catalog is evident. Maximum

computed magnitude is M = 6:1.

The GII catalog events with ML > 2:5 between 1985 and 2002 selected for the

rectangular area: latitude 27 - 38, longitude 32 - 36.5 are shown on Fig.14. The total

number of events is 4694. The spatial distribution of the catalog events is shown

on Fig.16 together with the main faults used in the simulated model. At least four

prominent earthquake clusters can be seen: one is associated with the Cyprus Arc,

the second with the Gulf of Aqaba, the third with the Suez Rift, and the fourth with

the Dead Sea. In our model the Cyprus Arc was not present. Figure 17 demonstrates

spatial density P = dN=dS of events taken from the GII catalog. Figure 18 shows

spatial density of the synthetic catalog. Inevitably, Figs. 17 and 18 have essential

discrepancies. For example, the density maximum in the GII catalog corresponds

to the Gulf of Aqaba area, while the density maximum of the synthetic catalog lies

between the nodes corresponding to the NSZ-DST and CF-NST junctions. This

happens because the seismic swarm of the Gulf of Aqaba cluster has a much higher

(about 30 times) density than the overall (averaged) density of the region (excluding

CA), and apparently this is not explained by the mechanisms, taken into account

in our model. Thus, to make a sensible comparison of the two catalogs we �lter out

from the GII catalog all the CA events and resample the GA cluster so that only

one event out of each thirty events remains. The remaining catalog is comprised of

1256 events (see Fig.19).
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There are 2848 events with M > 2:5 in the synthetic catalog. Thus, intensity of

the catalog is 2848/2000=1.424 events per time unit, while the GII catalog contains

after �ltering 1256 events, thus the intensity being 1256/18=70 1/yr. Hence, 50 time

units in the synthetic catalog correspond to 1 year. A stationary 900 time units long

synthetic catalog sample (the 500 - 1400 interval) equivalent to the 18 years long

GII real catalog is shown on Fig. 15. On Fig.18 one can see that there are almost

no signi�cant events along internal faults. The maximum of the synthetic intensity

is located between the latitudes 30 and 32 - the same as for the �ltered GII catalog.

Comparison of Figures 18 and 19 shows that there are still essential di�erences

between the GII �ltered catalog and the equivalent 900 time units long synthetic

catalog. For example, the GII is more representative by magnitudes between 4 and

5, while the synthetic one has more events with M > 5:5 and M < 3:5 (see also

Fig.20). Figure 20 shows the magnitude-number distribution of events in the GII

and synthetic catalogs, which turns out to be essentially nonlinear. Roughly two

branches can be selected in the GII distribution, with the Guttenberg-Richter b

value being � 0:3 between magnitudes 2.5 and 4.5 and b � 1: within the 4.5 - 6.5

interval. For the synthetic catalog b � 0:6 for magnitudes between 2.5 and 5.5 and

b � 0:15 between magnitudes 5.5 and 6.5.

5 Conclusion

A detailed description of a two-dimensional mathematical model of a tectonic block

structure, incorporating migration of 
uids along tectonic faults, was presented to-

gether with the related numeric algorithms. Results of numeric simulations based

on the model for an arti�cial regular \brick wall" block structure were reported for

four variants di�ering in 
uid regimes. Collective motion of blocks was found to be

determined by geometry of the tectonic structure and by motion of con�ning blocks,

and to be independent of 
uid regime. Spatial clustering of epicenters was observed.

Patterns of the simulated earthquake 
ows depended on the boundary conditions for


uid. A reasonable qualitative agreement of the simulated earthquakes catalog and

the catalog of the Geophysical Institute of Israel is found in model simulations for

the Israeli seismic region. However, the quantitative agreement is not very good. An
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almost stationary synthetic catalog was obtained in seismometer-recordable range of

magnitudes. Tuning simulation parameters, we obtained the maximum magnitude

and the relative rates of occurrence in di�erent magnitude ranges close to real values.

However, large discrepancy remained. By �ltering out the Cyprus Arc cluster and

decimating the Aqaba cluster (they are caused by a mechanism not considered in

the model) the spatial earthquake pattern was mimicked, as well as relative rates of

occurrence of earthquakes of magnitude between 3 and 5. However, the number of

the smallest M � 2:5 and the largest M � 6 events is yet almost two times greater

than in the real catalog of the Geophysical Institute of Israel after �ltering.
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Figure 1. Geometry of the \brick-wall" block structure. Con�ning blocks are

hatched. Directions of their motion are shown by arrows.
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Figure 2. Earthquake 
ows for M � 4. Vertical axis: magnitude M of an event,

horizontal axis: time of an event.
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Figure 3. Correlation of magnitudes M (horizontal axis) and M 0 (vertical axis).

30



0 400 800 1200 1600 2000
0

20000

40000

60000

(c)

0 400 800 1200 1600 2000
0

5000

10000

15000

20000

(d)

0 400 800 1200 1600 2000
0E+0

2E+5

4E+5

6E+5

(a)

0 400 800 1200 1600 2000
0

5000

10000

15000

20000

25000

(b)
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Figure 5. Histograms of the number of earthquakes in equal magnitude intervals.

Vertical axis: log10N(M), horizontal axis: magnitude M .
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Figure 6. Histograms (gray scale coded) of the number of pairs of horizontal coordi-

nates (xi; xi+1) of epicenters of consecutive earthquakes for entire synthetic catalogs.

Horizontal axis: xi, vertical axis: xi+1.
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Figure 7. Histograms (gray scale coded) of the number of pairs of horizontal coordi-

nates (xi; xi+1) for the epicenters of consecutive earthquakes, which occurred at the

lower boundary of the tectonic region. Horizontal axis: xi, vertical axis: xi+1.
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Figure 8. Histograms (gray scale coded) of the number of pairs of horizontal coor-

dinates (xi; xi+1) for the epicenters of consecutive earthquakes, which occurred on

the lower internal horizontal fault. Horizontal axis: xi, vertical axis: xi+1.
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Figure 9. Histograms (gray scale coded) of the number of pairs of horizontal coor-

dinates (xi; xi+1) for the epicenters of consecutive earthquakes, which occurred on

the upper internal horizontal fault. Horizontal axis: xi, vertical axis: xi+1.
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Figure 10. Histograms (gray scale coded) of the number of pairs of horizontal co-

ordinates (xi; xi+1) for the epicenters of consecutive earthquakes, which occurred at

the upper boundary of the tectonic region. Horizontal axis: xi, vertical axis: xi+1.
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(a)

(b)

Figure 11. A sketch of �nal positions of blocks at t = 2000. Dotted line { the

external boundary of the tectonic region. Displacements of blocks are exaggerated.

Variants (c){(d) (not shown) are similar to (b).
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Figure 12. The Sinai Subplate.
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Figure 13. The magnitude versus time distribution for the synthetic catalog events

(111296 events in total).
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Figure 14. The magnitude versus time distribution for the real GII catalog events

selected for the area, shown on Fig.12, for the period 1985-2002 (a) before �ltering

and (b) after �ltering out the Cyprus Arc events and the Gulf of Aqaba events

resampling (removing 29 out of 30 events). The total number of events of magnitude

ML > 2:5 is 4694, after �ltering 1256 events remain.
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Figure 15. The magnitude versus time distribution for the synthetic catalog events

for a span of 900 simulated time units.
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Figure 16. Lat-Long distribution of the GII catalog events with ML > 2:5 and the

network of faults used for simulation.
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Figure 17. Spatial log density of the GII catalog for events with ML > 2:5.
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Figure 18. Equivalent spatial log density of the 2848 synthetic events.
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Figure 19. Spatial log density of the GII catalog after �ltering out the Cyprian Arc

events and 29/30 of the Gulf of Aqaba events.
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(c)

Figure 20. The number of events versus magnitude distribution for (a) the un�ltered

GII catalog; (b) the �ltered GII catalog and (c) the synthetic catalog.
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