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Exactly soluble hierarchical clustering model: Inverse cascades, self-similarity, and scaling
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We show how clustering as a general hierarchical dynamical process proceeds via a sequence of inverse
cascades to produce self-similar scaling, as an intermediate asymptotic, which then truncates at the largest
spatial scales. We show how this model can provide a general explanation for the behavior of several models
that has been described as ‘‘self-organized critical,’’ including forest-fire, sandpile, and slider-block models.
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I. INTRODUCTION

Clustering and aggregation play an important role
many complex systems. In this paper, we present an inv
cascade model for the self-similar growth of clusters. E
ments are introduced at the smallest scale, which then
lesce to form larger and larger clusters. The inverse casc
is terminated by the loss of the largest clusters. The syste
thus in a quasi-steady state with the loss of elements in la
clusters balanced by the introduction of new elements.
clustering process is recognized to be a branching netw
similar to a diffusion limited aggregation cluster or a riv
network. Individual clusters are analogous to branches,
coalescence is equivalent to the joining of two branches

There is a wide range of applications for this analysis.
a specific example, we consider the forest-fire model@1#
which has been said to exhibit self-organized criticality@2#.
In one version of the forest-fire model, a square grid of s
is considered. At each time step, a model tree or a mo
spark is dropped on a randomly chosen site. If the site
unoccupied when a tree is dropped, it is ‘‘planted.’’ T
sparking frequencyf is the inverse number of attempted tr
drops before a spark is dropped. If the spark is dropped o
empty site, nothing happens; if it is dropped on a tree
ignites and ‘‘burns’’ all adjacent trees in a model forest fi
In this model, individual trees are introduced at the smal
scale, clusters of trees coalesce to form larger and la
clusters. Significant numbers of trees are lost only in
largest fires that terminate the inverse cascade@3#. The non-
cumulative frequency-area distribution for the fires is w
approximated by a power-law relation

N}
1

Aa
, ~1.1!

with a'1. If the sparking frequencyf is relatively large, the
largest fires are relatively small and the self-similar inve
cascade is valid only over a relatively small range of clus
PRE 601063-651X/99/60~5!/5293~8!/$15.00
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sizes. If the sparking frequencyf is small, the fires that ter-
minate the cascade are large and iff is sufficiently small the
fires will span the entire grid. The noncumulative frequenc
area distribution of cluster sizes satisfies Eq.~1.1!, with a
'2, and the cumulative distribution of clusters with ar
larger thanA satisfies Eq.~1.1! with a'1. The behavior of
the one-dimensional forest-fire model was discussed in te
of a cascade by Paczuski and Bak@4#. The inverse cascad
analysis is also applicable to the sandpile model@2# and the
slider-block model@5#. In the sandpile model the clusters a
the metastable regions that participate in avalanches o
they are triggered. In the slider-block model, the clusters
the metastable regions that participate in slip events o
they are initiated.

One of the most striking patterns in biology is clusters
aggregations of animals@6#. Examples range from bacteria t
whales and include insects, fish, and birds. Bonabeauet al.
@7# showed that the frequency-number distribution of wha
satisfy Eq. ~1.1!, with a'1. The model we present her
should also be applicable to these biological problems.

II. HIERARCHICAL CLUSTERING

We consider a system of stationary entities that we s
refer to as elements. In terms of the forest-fire model,
elements are the trees that are planted on a lattice. The
tem is growing due to the steady injection of new eleme
that are added to locations that are not already occupied
previously injected elements. We define connected set
elements, i.e., groups of elements that are in contact, to
clusters. Note, however, that our model doesnot require that
elements be confined to lattice points. Neighbors can be
fined with any metric~e.g., distance! condition, or according
to a defined graph structure~e.g., lattice!. In the forest-fire
model, clusters are the groups of adjacent trees that wo
burn in a fire if a spark dropped on one of the trees in
cluster. We construct rules for assigning rank to clusters
such a system, based in spirit on the Strahler@8# classifica-
5293 © 1999 The American Physical Society
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tion that was originally developed for branching in river ne
works. In this classification system, a stream with no u
stream tributaries is defined to be of rank 1; when two ran
streams combine, they form a stream of rank 2, and so fo
However, when streams of different rank combine, the ra
of the dominant stream prevails. Our model for the growth
clusters is an extension of a scheme developed earlier@9#
which only allowed for the coalescence of clusters of
same rank. This model is much richer in that it accomoda
the coalescence of clusters of all ranks and can, there
describe a much wider array of phenomena. The rules for
cluster model are the following.

~1! We define a single element that is added to a system
be a cluster of rank 1.

~2! If a new element is added adjacent to an existing cl
ter, we say that it is added to the cluster without chang
that cluster’s rank, unless the cluster is a single elemen
that special case, we define the two elements as formin
cluster of rank 2.

~3! If a new element connects two existing clusters
ranksi andj, respectively, then the rank of this new cluster
defined asi 11 when i 5 j , and as max$i,j% when iÞ j . In
words, this is equivalent to saying that when two clusters
equal rank coalesce, then the rank increases by one; h
ever, if the two clusters are not of equal rank, then the r
of the larger cluster prevails.

~4! If a new element connects three or more clusters, t
the rank of the new cluster is defined to be~a! the maximal
rank of these clusters, when one of the clusters has a
exceeding that of all of the others; or~b! the maximal rank of
these clusters plus one, when there are two or more clus
of the same maximal rank.~This is a rare event—akin to
four-body interaction—and it is ignored in the model equ
tions given below.!

~5! We terminate the inverse cascade of elements fr
small to large clusters by eliminating clusters of a specifi
high rank.

In Fig. 1, we illustrate how this model works. We no
wish to establish the dynamical equations governing the e
lution of this system. Let us defineNi to be the number of
clusters with ranki, for i>1. Let mi be the average mass—
i.e., the number of elements—of a cluster of ranki. Then, the
total massMi of the clusters of ranki is given by

Mi5Nimi . ~2.1!

FIG. 1. Illustration of how two clusters of massmi and mj

coalesce to form a single cluster, when an element~solid square!
bridges the gap between two clusters. The two clusters have pe
etersl i andl j . This example employs a Cartesian lattice for clari
although our model doesnot require a lattice structure.
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For convenience, we will define the mass of a single elem
to be 1, namely,m151. For example, in two dimensions, w
can regardmi as the mean areaAi of a cluster of ranki. This
would be the case in the forest-fire model.

We now develop a mean-field approximation describ
the dynamical evolution prescribed by the mapping ru
given above. As indicated, we ignore the simultaneous c
lescence of more than two clusters. We denote the insta
neous change in all quantities using the mapping symbol°.
Accordingly, when two clusters of ranksi andj coalesce, the
values ofNi andMi are modified as follows. Fori 5 j ,

Ni 11°Ni 1111, Ni°Ni22, ~2.2!

Mi 11°Mi 1112mi , Mi°Mi22mi , ~2.3!

and, for i , j ,

Ni°Ni21, Nj°Nj , ~2.4!

M j°M j1mi , Mi°Mi2mi , ~2.5!

with equivalent expressions forj , i . In these equations fo
M j , we have ignored the addition of an element that bridg
or joins the two clusters. Sincemi will be shown to increase
in an essentially geometric progression with respect to
rank i, the omission of that solitary unit mass in the calcu
tion does not influence the asymptotic properties asi→`.

In our model, coalescence occurs when a new elem
connects two existing clusters.~We have already indicated
that four-body and higher order effects will be neglecte!
Accordingly, in the mean-field approximation, we assum
that the rater i j of coalescence between clusters of ranki
andj is proportional to the product of their total numbers,Ni
andNj , and to the product of their boundary sizes,l i andl j ,
and is naturally related to the joint probability of the ne
element connecting two pre-existing clusters. For exampl
two dimensions,l i refers to the effective length of the cluste
boundary. Thus we assume that

r i j }Nil iNj l j . ~2.6!

This is a Euclidean approximation, and emerges in the sp
of classical kinetic theory, although the mechanics of t
problem is entirely different. In Secs. IV and VII, this mod
will be modified to accommodate the possible fractal geo
etry of clusters.

We now define

Li5Nil i ~2.7!

to be the total size of the boundary associated with clus
of rank i. We select the normalization for our time scale
that r i j 5LiL j . Accordingly, let C be the injection rate of
single elements, utilizing this time scale. The evolution
the system can be determined by appropriately adapting
~2.2!–~2.5!. From Eqs.~2.2! and ~2.4!, we write

Ṅ15C22L1
22(

j 52

`

L1L j , ~2.8!

m-
,
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Ṅi5Li 21
2 22Li

22 (
j 5 i 11

`

LiL j for i .1. ~2.9!

In Eq. ~2.8!, we observe that the rate of change in the num
of clusters of rank 1 is equal to the injection rate minus
rate of coalescence of rank 1 clusters together with the
of coalescence of rank 1 clusters with clusters of larger ra
The factor of 2 appears becausetwo rank 1 clusters were los
in coalescing to form a rank 2 cluster. Meanwhile, in E
~2.9!, we observe that the rate of change in the numbe
clusters of ranki is equal to the rate of ranki cluster forma-
tion from the coalescence of pairs of ranki 21 clusters, mi-
nus the rate of coalescence of pairs of ranki clusters, to-
gether with the rate of coalescence of ranki clusters with
clusters of larger rankj . i .

In a similar way, taking into accountm151, we can ex-
press the mass-balance in the system, derived from Eqs.~2.3!
and ~2.5!, according to

Ṁ15C22L1
22(

j 52

`

L1L j , ~2.10!

Ṁ i52Li 21
2 mi 211 (

k51

i 21

LiLkmk22Li
2mi

2 (
j 5 i 11

`

LiL jmi for i .1. ~2.11!

Note that Eqs.~2.8! and ~2.10! are identical, sinceM15N1.
We observe that the equations above have the pote

for self-similarity, since most of the sums are infinite in e
tent, and might be expected to be convergent. Intuitively,
expect thatL j will diminish as j increases; while the bound
ary size of individual clusters of rankj increase, their abso
lute numbers will decrease even more rapidly so that
total boundary size in clusters of rankj will be monotone
decreasing. The finite sum, which appears in Eq.~2.11!, is
somewhat more involved. Nevertheless, it is reasonabl
expect that the product ofmk with Lk will steadily diminish
as k becomes smaller and that negligible contributio
emerge from low values ofk. Finally, it is easy to see that a
of the governing rate equations will quickly converge, in t
sense of an inverse cascade fromi 51 to some finite cutoff,
ast→`. As N1 begins to grow, it provides a stimulus to th
growth of N2, and so on. Similarly, as the masses at ea
rank in the system grow, they will in turn cause the bound
size l i of each cluster of ranki to grow, basically in propor-
tion to some power inmi . With this intuition in hand, we
now obtain the steady-state solution for this system.

III. STEADY-STATE SOLUTION: CLUSTER AND MASS
SCALING

We derive a steady-state solution for an inverse casc
from Eqs.~2.8! – ~2.11!. In our inverse cascade, single el
ments are introduced at the lowest level, and they coalesc
form larger and larger clusters. The inverse cascade is te
nated by assuming that very large clusters are removed f
the system. We assume that our system develops in a s
ciently large region, so that edge effects can be ignored o
r
e
te
k.
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a long time. Otherwise, we will have a completely spac
filling solution and percolation effects will govern. We ca
regard this~limited! steady-state solution to be an intermed
ate asymptotic@10# for our system—our solution will de-
scribe the similitude that emerges before percolation
space-filling issues become significant. The steady-state
lution follows when the time derivatives in the left han
sides of Eqs.~2.8!–~2.11! vanish, with the result

C52L1
21(

j 52

`

L1L j , ~3.1!

Li 21
2 52Li

21 (
j 5 i 11

`

LiL j for i .1, ~3.2!

2Li 21
2 mi 211 (

k51

i 21

LiLkmk52Li
2mi1 (

j 5 i 11

`

LiL jmi

for i .1. ~3.3!

As noted earlier, Eqs.~2.8! and ~2.10! are equivalent.
Equation~3.2! has a self-similar solution, since that equ

tion is invariant underi ° i 11, and depends only onL j /Li .
Thus, we seek a solution having the form

Li5axi 21, ~3.4!

where 0,x,1. The first of these constraints onx corre-
sponds to boundary sizes being positive, while the secon
necessary for the summation to exist. We find thatx satisfies

2x2i 221 (
j 5 i 11

`

xi 1 j 225x2i 24. ~3.5!

Summing the infinite geometric series explicitly, and divi
ing by x2i 24, we obtain

2x21
x3

12x
51 or x322x22x1150. ~3.6!

This equation has a single root in the range 0,x,1,
namely,x50.55495813 . . . . Given Eqs.~3.1! and~3.6!, we
find that

C5a2@21x/~12x!#5a2 or a5C1/2. ~3.7!

Substitution of these results into Eq.~3.4! gives

Li5C1/2~0.55495813! i 21. ~3.8!

We now turn our attention to Eq.~3.3!. We substitute Eq.
~3.4! into Eq. ~3.3!, dividing by a2xi 23 and taking into ac-
count Eq.~3.6!. We then obtain

2xi 21mi 211 (
k51

i 21

xk11mk52xi 11mi1
xi 12

12x
mi5xi 21mi .

~3.9!

This equation does not have an exactly self-similar soluti
since it is not invariant underi ° i 11. Suppose that we
make the substitution
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xi 21mi5yi 21, ~3.10!

assuming thaty.1, whereupon, from summing the finit
series, we obtain

2xyi 221x2
yi 2121

y21
5yi 21. ~3.11!

We observe that the solution fory in this equation depend
upon i. However, for largei, Eq. ~3.11! approximately im-
plies, assuming that we can replaceyi 2121 by yi 21, that
2x1x2y/(y21)5y, which we rewrite as

y22~x11!2y12x50. ~3.12!

This equation has a unique solution fory.1, namely,y
51/x51.8019377 . . . . Accordingly, for large i, we have
asymptotic self-similarity with

mi'ax12 i yi 215aci 21, ~3.13!

wherec51/x253.24697602 . . . . With m151, we have

mi'~3.24697602! i 21. ~3.14!

Before moving to issues dealing with fractals and bran
ing, the solutions we have just obtained forLi and formi can
be immediately exploited. SinceLi}xi and, approximately,
mi}x22i , we observe thatLiAmi'const. For example in two
dimensions, recalling thatLi[Nil i and introducing the Eu-
clidean relation thatl i}Ami , it follows thatNimi'const. or,
equivalently, we find the number-mass or number-area r
tionships

Ni}1/mi}1/Ai . ~3.15!

This is equivalent to Eq.~1.1! with a51. The branch num-
bers Ni are loosely equivalent to a logarithmic binning
cluster sizes. Logarithmic binning is equivalent to a cumu
tive distribution. Thus the result given in Eq.~3.15! is in
agreement with the distribution of cluster sizes obtain
from the forest-fire model, as discussed above. The con
of clusters can also be extended to both sandpile and sl
block models. In these cases, the clusters are the metas
regions that will avalanche or slip when an event is trigger
In both cases, the cumulative distribution of cluster siz
satisfy Eq.~1.1! with a'1. These scaling relationships a
archetypical of self-organized criticality. Remarkably, th
scaling has been deduced using solely analytic means
our inverse-cascade hierarchical cluster model.

IV. ADAPTATION FOR FRACTAL PERIMETER:
CLUSTER AND MASS SCALING

In the analysis given in the previous sections, we assum
that the rate of cluster coalescencer i j was proportional to the
linear dimensions of the two clusters as given in Eq.~2.6!.
We now generalize this dependence to account for the
sibility of fractal clusters by introducing an ‘‘efficiency’’ fac
tor e,1, with an appropriate scaling such that

r i j 'e2u j 2 i uNil iNj l j5e2u j 2 i uLiL j . ~4.1!
-
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As before,r i j is the rate of coalescence between clusters
ranks i and j. This modification can, for example, describ
the increased efficiency with which a smaller cluster can c
lesce with a larger one, since the smaller cluster can bec
attached inside one of the nooks and crannies that can c
acterize a fractal perimeter.

With this modification, we obtain analogs of Eqs.~2.8!–
~2.11!:

Ṅ15Ṁ15C22L1
22(

j 52

`

e12 jL1L j , ~4.2!

Ṅi5Li 21
2 22Li

22 (
j 5 i 11

`

e i 2 jL iL j for i .1, ~4.3!

Ṁ i52Li 21
2 mi 211 (

k51

i 21

ek2 iL iLkmk22Li
2mi

2 (
j 5 i 11

`

e i 2 jL iL jmi for i .1. ~4.4!

In the steady state, we obtain analogs of Eqs.~3.1!–~3.3!:

C52L1
21(

j 52

`

e12 jL1L j , ~4.5!

Li 21
2 52Li

21 (
j 5 i 11

`

e i 2 jL iL j for i .1, ~4.6!

2Li 21
2 mi 211 (

k51

i 21

ek2 iL iLkmk

52Li
2mi1 (

j 5 i 11

`

e i 2 jL iL jmi for i .1.

~4.7!

Substituting Eq.~3.4! into Eq. ~4.6!, we obtain an analog o
Eq. ~3.6!:

2x21
x3

e2x
51 or x322ex22x1e50

or e5
x2x3

122x2 . ~4.8!

As Li are positive,x must be positive from its definition in
Eq. ~3.4!. Suppose thate5x. Then x22x35x2x3, gving
x50, a contradiction. Accordingly, for positivex, the sign of
e2x5x3/(122x2) changes only atx5A1/2, where e
changes sign as it passes through infinity~due to the denomi-
nator!. It is easy to see that the signs of bothe2x ande are
positive for 0,x,A1/2, and negative forx.A1/2. As x
,e is nesessary for the summation of the geometric serie
exist, this implies thatx,A1/2. In addition, the conditione
,1 requires thatx,0.55495813 . . . . Forexample,x50.5
corresponds toe53/4. From Eqs.~4.5! and~4.8!, we obtain
that a5x C1/2, for any e.
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Let us turn now to the mass balance equation~4.7!. Sub-
stituting Eq.~3.4! and assumingxi 21mi5yi 21, we obtain an
analog of Eq.~3.11!:

2xyi 221x2e12 i
~ey! i 2121

ey21
5yi 21. ~4.9!

We assume thatey.1. Precisely as in Eq.~3.11!, we ob-
serve that the solution fory in this equation depends uponi.
However, for largei, Eq. ~4.9! approximately implies tha
2x1x2y/(ey21)5y, which we rewrite as

ey22~x212ex11!y12x50. ~4.10!

Due to Eq.~4.8!, Eq. ~4.10! has a solutiony51/x for any e.
Note that conditioney.1 is satisfied fory51/x. Accord-
ingly, for large i, we have asymptotic self-similarity with
mi'aci 21, wherec51/x2, as in Eq.~3.13!. For example,
whene53/4, we havec54.

It is important to remember thate describes the perimetri
fractal scaling for the clusters. The relationship between
rimetric and areal scaling remains a controversial top
However, assuming that one can identify an appropriate
between the two, for example in the context of forest fire
other models, then the preceding discussion makes it
sible to identify the frequency-area relationship for frac
clusters, in analogy to theN}1/A relationship we identified
previously for Euclidian clusters.

V. BRANCHING NUMBERS

In the analogy between clustering and river networks t
we have discussed above, for our clusters we can write

Ni 11

Ni
5x2, ~5.1!

which is known as the bifurcation ratio for river network
Also, we have

l i

l i 11
5x, ~5.2!

which is known as the length-order ratio for river network
For river networks, the fact that these two ratios are alm
constant is known as Horton’s laws@11#.

A major step forward in classifying river networks wa
made by Tokunaga@12#. He extended the Strahler orderin
system to include side branching. A first-order branch jo
ing another first-order branch is denoted by the subsc
‘‘11,’’ and the number of such branches isN11; a first-order
branch joining a second-order branch is subscripted ‘‘1
and the number of such branches isN12; and a second-orde
branch joining a second-order branch is subscripted ‘‘2
and the number of such branches isN22.

In order to apply the concept of side branching to t
coalescence of clusters, let us suppose that we have a
lescence of two clusters, of ranksi andj. In the casei , j , the
cluster of ranki becomes abranch of the cluster of rankj.
Note that, if the smaller cluster has its own branches, th
branches arenot counted as branches of the larger clust
However, these branches, together with all of their branch
e-
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st
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pt
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etc., are counted assubclustersof the larger cluster. In anal
ogy to river networks, branches are to tributaries as clus
are to drainage basins. A branch formed by the cluste
rank i is considered to be a subcluster too, and is assigned
rank i. Any other subcluster is assigned the rank of a clus
from which it first formed as a branch. In analogy to riv
networks, subclusters of a cluster correspond with
streams in a drainage basin. The casei . j is treated simi-
larly. In the casei 5 j , both clusters of ranki become
branches of ranki of the new cluster of ranki 11. Subclus-
ters and their ranks are defined the same way as above

Let t i j be the average number of branches of ranki in a
cluster of rankj, for i , j , and letni j be the total number of
subclusters of ranki in a cluster of rankj. For i 5 j , we define
t i i 5nii 51. By definition, fori , j we have

ni j 5(
k5 i

j 21

niktk j . ~5.3!

Moreover, letNi j 5Njni j be the total number of subcluste
of rank i for all clusters of rankj, and letTi j 5Njt i j be the
total number of branches. This classification scheme is ill
trated in Fig. 2. In Fig. 2~a!, we have a cluster of rank 1
which corresponds to a single tree in the forest-fire model
Fig. 2~b!, two clusters of rank 1 have coalesced to form
cluster of rank 2. This cluster has been joined by a cluste
rank 1. In the forest-fire model, two trees on adjacent g
points have been joined by a third tree. In Figs. 2~c! and 2~d!,
clusters of rank 3 and 4 are illustrated. For this example,
have n125n235n3453, n135n24511, n14543, t125t23
5t3453, t135t2452, andt1454.

As before, we regard the coalescence of more than
clusters as being exceedingly rare and neglect them in
treatment. When two clusters of ranksi and j coalesce, we
prescribe the mappings forNki , Nk j , Tki , and Ti j as de-
scribed below. Wheni 5 j ,

Nk,i 11°Nk,i 1112nki , Nki°Nki22nki for k, i ,
~5.4!

Ti ,i 11°Ti ,i 1112, Tk,i°Tki22tki for k< i ;
~5.5!

and, wheni , j ,

FIG. 2. Illustration of the concept of branching applied to t
coalescence of clusters.~a! A single element.~b! Two single ele-
ments have been linked to form a cluster or rank ‘‘2,’’ and a th
element has joined this cluster as a side branch.~c! Two clusters of
rank ‘‘2’’ have coalesced to form a cluster of rank ‘‘3.’’ Anothe
cluster of rank ‘‘2’’ and two single elements have been added
this cluster.~d! Two clusters of rank ‘‘3’’ have coalesced to form
cluster of rank ‘‘4.’’ Another cluster of rank ‘‘3,’’ two clusters of
rank ‘‘2’’ and four single elements have been added to this clus
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Nk j°Nk j1nki , Nki°Nki2nki for k< i , ~5.6!

Ti j °Ti j 11, Tki°Tki2tki for k< i . ~5.7!

Given the rate of coalescencer i j 5LiL j , we describe the
time evolution of the branching process by the equations

Ṅk j52L j 21
2 nk, j 211(

i 5k

j 21

LiL jnki22L j
2nk j

2 (
i 5 j 11

`

LiL jnk j for k, j ~5.8!

from Eqs.~5.4! and ~5.6!, and

Ṫj 21,j52L j 21
2 1L j 21L j22L j

2t j 21,j

2 (
k5 j 11

`

LkL j t j 21,j for j .1, ~5.9!

Ṫi j 5LiL j22L j
2t i j 2 (

k5 j 11

`

LkL j t i j for i , j 21

~5.10!

from Eqs.~5.5! and~5.7!. As before, we turn our focus to th
steady-state solution of Eqs.~5.8!–~5.10!.

VI. STEADY STATE: BRANCHING NUMBERS

We begin for the steady state case by setting the t
derivatives in the left hand sides of equations~5.8!–~5.10! to
zero. We obtain

2L j 21
2 nk, j 211(

i 5k

j 21

LiL jnki52L j
2nk j1 (

i 5 j 11

`

LiL jnk j

for k, j , ~6.1!

2L j 21
2 1L j 21L j52L j

2t j 21,j1 (
k5 j 11

`

LkL j t j 21,j for j .1,

~6.2!

LiL j52L j
2t i j 1 (

k5 j 11

`

LkL j t i j for i , j 21. ~6.3!

We observe that, due to the finite summation present in
~6.1!, it is not invariant underj 2k° j 2k11, and its solu-
tion is not exactly self-similar inj 2k. However, we now
employ the same methodology used in Sec. III and obtain
asymptotically valid approximate solution. In particular, w
substitute Eq.~3.4! into Eq. ~6.1!, and divide bya2xj 1k24,
and we obtain

2xj 2knk, j 211(
i 5k

j 21

xi 2k12nki52xj 2k12nk j1
xj 2k13

12x
nk j

5xj 2knk j . ~6.4!

Based on our result obtained using Eq.~3.10!, we introduce
e

q.

n

xj 2knk j5zj 2k, ~6.5!

assumingz.1, and, from summing the finite series in E
~6.4!, we obtain

2xzj 2k211x2
zj 2k21

z21
5zj 2k. ~6.6!

Approximating zj 2k21 by zj 2k in the asymptotic limit j
@k, Eq. ~6.6! approximately implies that 2x1x2z/(z21)
5z, or

z22~x11!2z12x50. ~6.7!

This latter equation isidentical to Eq. ~3.12!, and has a
unique solutionz.1, namely,z51/x51.8019377 . . . and,
thereby, demonstrates that the branching network descrip
preserves the same structural character. Accordingly, foj
@k, we have

nk j'bxk2 j zj 2k5bcj 2k, ~6.8!

where c51/x253.24697602 . . . asbefore. Thus we have
approximately

nk j'~3.24697602! j 2k ~6.9!

in the limit j @k. For the deterministic example given in Fig
1, we havenk j'4 j 21 for j @k. Substituting Eq.~3.4! into
Eq. ~6.3! and dividing bya2x2 j 24, we obtain

xi 2 j 1252x2t i j 1
x3

12x
ti j 5t i j for i , j 21, ~6.10!

which establishes that

t i j 5xi 2 j 12 for i , j 21. ~6.11!

@For the special case thati 5 j 21, we have from Eq.~6.2!
that 21x5t j 21,j .# This, now, is functionally equivalent to
the similitude relationship assumed by Tokunaga, namel

t i j 5t j 2 i5axi 2 j . ~6.12!

Importantly, the behavior that Tokunagaassumedto be valid
emerges in a completely natural way from the underly
mathematics of our inverse cascade. Sincex50.55495813,
we have, for our inverse cascade,

t i j 5~0.55495813! i 2 j 11. ~6.13!

For the deterministic example given in Fig. 1, we havet i j
5(1/2)i 2 j 11.

Finally, the connection between our treatment of bran
ing and our earlier treatment of clustering needs to be es
lished. In particular, we observe thatmj turns out to be
equivalent ton1 j and that both scale ascj 21 where, as we
have already seen,c51/x2.

VII. ADAPTATION FOR FRACTAL PERIMETER:
BRANCHING NUMBERS

The branching analysis given in Sec. IV is easily modifi
to include the fractal perimeter dependence introduced in
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~4.1!. Introducing this relation into Eqs.~5.8!–~5.10!, we ob-
tain

Ṅk j52L j 21
2 nk, j 211(

i 5k

j 21

e i 2 jL iL jnki22L j
2nk j

2 (
i 5 j 11

`

e j 2 iL iL jnk j for k, j , ~7.1!

Ṫj 21,j52L j 21
2 1e21L j 21L j22L j

2t j 21,j

2 (
k5 j 11

`

e j 2kLkL j t j 21,j for j .1, ~7.2!

Ṫi j 5e i 2 jL iL j22L j
2t i j 2 (

k5 j 11

`

e j 2kLkL j t i j for i , j 21.

~7.3!

In the steady state, we obtain analogs of Eqs.~6.1!–~6.3!:

2L j 21
2 nk, j 211(

i 5k

j 21

e i 2 jL iL jnki

52L j
2nk j1 (

i 5 j 11

`

e j 2 iL iL jnk j for k, j ,

~7.4!

2L j 21
2 1e21L j 21L j52L j

2t j 21,j

1 (
k5 j 11

`

e j 2kLkL j t j 21,j for j .1,

~7.5!

e i 2 jL iL j52L j
2t i j 1 (

k5 j 11

`

e j 2kLkL j t i j for i , j 21.

~7.6!

Substituting Eq.~3.4! into Eq. ~7.4!, and assuming tha
xj 2knk j5zj 2k, we obtain, due to Eq.~4.8!, an analog of Eq.
~6.6!, namely,

2xzj 2k211x2ek2 j
~ez! j 2k21

ez21
5zj 2k. ~7.7!

Assumingez.1, we approximate (ez) j 2k21 by (ez) j 2k in
the asymptotic limitj @k. In this case, Eq.~7.7! approxi-
mately implies that 2x1x2z/(ez21)5z, or

ez22~x212ex11!z12x50. ~7.8!

This latter equation isidentical to Eq. ~4.10!, and has a so-
lution z51/x, for any e. Accordingly, for j @k, we have
asymptotic self-similarity with nk j'bxk2 j zj 2k5bcj 2k,
wherec51/x2 as before.

Substituting Eq.~3.4! into Eq. ~7.6! and dividing by
a2x2 j 24, we obtain
e i 2 j xi 2 j 1252x2t i j 1
x3

e2x
ti j 5t i j for i , j 21

~7.9!

which establishes that

t i j 5e i 2 j xi 2 j 12 for i , j 21. ~7.10!

@For the special case thati 5 j 21, we have from Eq.~7.5!
that 21x/e5t j 21,j .# Thus, our modification of the Euclid
ean model to accommodate fractal perimetric behavio
complete, and the self-similar description of the branch
process has been shown to follow in a completely analog
way.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have presented an inverse cascade m
for clustering. This model requires the following.

~1! The addition of single elements at a prescribed sm
scale.

~2! The consideration of the clustering process as a h
archical tree with side branching.

~3! The probability that a cluster of one order will coa
lesce with another cluster of the same or different orde
proportional to the product of the number of trees of the t
orders and the square root of their masses~or areas!.

~4! Clusters are lost~destroyed! at a prescribed large
scale.

Our inverse cascade model provides a general explana
for the behavior of several models that have been consid
to exhibit behavior which has often been described as ‘‘s
organized criticality,’’ and occurs in various settings inclu
ing the ‘‘forest-fire’’ model. In this model, the planting o
individual trees is the introduction of single elements, a
coalescence occurs when a planted tree bridges the gap
tween two existing clusters. The model ‘‘fires’’ burn signifi
cant numbers of trees only in the largest clusters, and
terminates the inverse cascade. Our model gives the num
mass~or area! distribution to beN}1/A; this is also found to
be the case for the forest-fire model. Our model is also
plicable for the sandpile and slider-block models. In t
sandpile model, the cluster is the region over which an a
lanche will spread once it is initiated. In the slider-bloc
model, the cluster is the region over which a slip event w
spread once it is initiated. The initiation of an avalanche
the sandpile model and the initiation of a slip event in t
slider-block model are equivalent to a spark being dropp
on a tree. In both models the clusters grow by coalescen

We conclude that these models, which are said to exh
self-organized criticality, are neither critical nor sel
organized. Instead, their behavior is associated with an
verse cascade which asymptotically approaches~so long as
the largest scales are not involved! power-law ~‘‘fractal’’ !
scaling. This behavior is related to the self-similar direct c
cade associated with the inertial-range of fully develop
isotropic turbulence. This behavior qualifies as a form
‘‘intermediate asymptotics’’@10#. It is interesting to note tha
earthquakes@13#, landslides@14#, and actual forest fires@15#
also have analogous power-law frequency-area distributio

We have quantified our inverse cascade in terms o
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branching tree hierarchy with side branching. We ha
adapted the taxonomy used for river networks to the gro
of our clusters. The order of each cluster is specified, and
our mean-field approximation, the number of clusters of e
order is obtained. We find that this distribution is identical
the self-similar side branching distribution introduced e
pirically by Tokunaga. This distribution has been found to
n,

Sc
e
h
in
h

-
e

applicable for river networks@16#, diffusion limited aggrega-
tion clusters@17#, and vein structures of leaves@18#.
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