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Exactly soluble hierarchical clustering model: Inverse cascades, self-similarity, and scaling
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We show how clustering as a general hierarchical dynamical process proceeds via a sequence of inverse
cascades to produce self-similar scaling, as an intermediate asymptotic, which then truncates at the largest
spatial scales. We show how this model can provide a general explanation for the behavior of several models
that has been described as “self-organized critical,” including forest-fire, sandpile, and slider-block models.
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[. INTRODUCTION sizes. If the sparking frequendyis small, the fires that ter-
minate the cascade are large andlig sufficiently small the
Clustering and aggregation play an important role infires will span the entire grid. The noncumulative frequency-
many complex systems. In this paper, we present an inversaea distribution of cluster sizes satisfies Ef1), with «
cascade model for the self-similar growth of clusters. Ele=2, and the cumulative distribution of clusters with area
ments are introduced at the smallest scale, which then codarger thanA satisfies Eq(1.1) with a~1. The behavior of
lesce to form larger and larger clusters. The inverse cascadke one-dimensional forest-fire model was discussed in terms
is terminated by the loss of the largest clusters. The system isf a cascade by Paczuski and BaK. The inverse cascade
thus in a quasi-steady state with the loss of elements in larganalysis is also applicable to the sandpile md@gland the
clusters balanced by the introduction of new elements. Thslider-block mode[5]. In the sandpile model the clusters are
clustering process is recognized to be a branching networthe metastable regions that participate in avalanches once
similar to a diffusion limited aggregation cluster or a river they are triggered. In the slider-block model, the clusters are
network. Individual clusters are analogous to branches, anthe metastable regions that participate in slip events once
coalescence is equivalent to the joining of two branches. they are initiated.
There is a wide range of applications for this analysis. As One of the most striking patterns in biology is clusters or
a specific example, we consider the forest-fire mdddl aggregations of animal§]. Examples range from bacteria to
which has been said to exhibit self-organized critical2y.  whales and include insects, fish, and birds. Bonaletal.
In one version of the forest-fire model, a square grid of site$7] showed that the frequency-number distribution of whales
is considered. At each time step, a model tree or a moddatisfy Eq.(1.1), with a~1. The model we present here
spark is dropped on a randomly chosen site. If the site ishould also be applicable to these biological problems.
unoccupied when a tree is dropped, it is “planted.” The
sparking frequency is the inverse number of attempted tree
drops before a spark is dropped. If the spark is dropped on an

empty site, nothing happens; if it is dropped on a tree, it \ye consider a system of stationary entities that we shall
ignites and “burns” all adjacent trees in a model forest fire.refer to as elements. In terms of the forest-fire model, the
In this model, individual trees are introduced at the smallesgiements are the trees that are planted on a lattice. The sys-
scale, clusters of trees coalesce to form larger and larggem is growing due to the steady injection of new elements
clusters. Significant numbers of trees are lost only in th&hat are added to locations that are not already occupied by
largest fires that terminate the inverse casd@jeThe non-  previously injected elements. We define connected sets of
cumulative frequency-area distribution for the fires is wellglements, i.e., groups of elements that are in contact, to be

Il. HIERARCHICAL CLUSTERING

approximated by a power-law relation clusters. Note, however, that our model doesrequire that
elements be confined to lattice points. Neighbors can be de-

Noc i (1.1) fined with any metride.g., distancecondition, or according

A’ ' to a defined graph structuie.g., lattice. In the forest-fire

model, clusters are the groups of adjacent trees that would
with a~1. If the sparking frequenciis relatively large, the burn in a fire if a spark dropped on one of the trees in the
largest fires are relatively small and the self-similar inversecluster. We construct rules for assigning rank to clusters in
cascade is valid only over a relatively small range of clusteisuch a system, based in spirit on the StrahB3rclassifica-
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{. For convenience, we will define the mass of a single element
L. ! to be 1, namelym;=1. For example, in two dimensions, we
\ can regardn; as the mean are®y; of a cluster of rank. This
would be the case in the forest-fire model.

We now develop a mean-field approximation describing
the dynamical evolution prescribed by the mapping rules
i given above. As indicated, we ignore the simultaneous coa-
u— lescence of more than two clusters. We denote the instanta-

neous change in all quantities using the mapping symbol
FIG. 1. lllustration of how two clusters of mass; and m, Accordingly, when two clusters of ranksndj coalesce, the

coalesce to form a single cluster, when an elenisalid squarg values ofN; andM; are modified as follows. Far=j,
bridges the gap between two clusters. The two clusters have perim-

etersl; andl;. This example employs a Cartesian lattice for clarity, Nir1—>Njz1+1, Ni—=>N;—2, (2.2)
although our model doesot require a lattice structure.

..........

M 1—M; 1 +2m;, M;—>M;—2m,, (2.3
tion that was originally developed for branching in river net- o
works. In this classification system, a stream with no up-and, fori<j,
stream tributaries is defined to be of rank 1; when two rank-1
streams combine, they form a stream of rank 2, and so forth. Ni—~Ni—1, N;—>Nj, (2.4
However, when streams of different rank combine, the rank
of the dominant stream prevails. Our model for the growth of Mj—=M;+m;, Mi—=M;—m;, (2.5

clusters is an extension of a scheme developed edfier

which only allowed for the coalescence of clusters of thewith equivalent expressions fgri. In these equations for
same rank. This model is much richer in that it accomodate$!;, we have ignored the addition of an element that bridges
the coalescence of clusters of all ranks and can, thereforey joins the two clusters. Sinag; will be shown to increase
describe a much wider array of phenomena. The rules for oun an essentially geometric progression with respect to the

cluster model are the following. ranki, the omission of that solitary unit mass in the calcula-
(1) We define a single element that is added to a system ttion does not influence the asymptotic properties-ase.
be a cluster of rank 1. In our model, coalescence occurs when a new element

(2) If a new element is added adjacent to an existing clusconnects two existing clusteréWWe have already indicated
ter, we say that it is added to the cluster without changinghat four-body and higher order effects will be neglected.
that cluster’s rank, unless the cluster is a single element. IAccordingly, in the mean-field approximation, we assume
that special case, we define the two elements as forming that the rater;; of coalescence between clusters of ranks
cluster of rank 2. andj is proportional to the product of their total numbexs,

(3) If a new element connects two existing clusters ofandN;, and to the product of their boundary sizgsandl;,
ranksi andj, respectively, then the rank of this new cluster isand is naturally related to the joint probability of the new
defined as+1 wheni=j, and as maf,j} wheni#j. In  element connecting two pre-existing clusters. For example in
words, this is equivalent to saying that when two clusters otwo dimensionsl; refers to the effective length of the cluster
equal rank coalesce, then the rank increases by one; howoundary. Thus we assume that
ever, if the two clusters are not of equal rank, then the rank
of the larger cluster prevails. rijeNiliN;l; . (2.6)

(4) If a new element connects three or more clusters, then
the rank of the new cluster is defined to (@ the maximal  This is a Euclidean approximation, and emerges in the spirit
rank of these clusters, when one of the clusters has a rand¢ classical kinetic theory, although the mechanics of this
exceeding that of all of the others; @) the maximal rank of  problem is entirely different. In Secs. IV and VII, this model
these clusters plus one, when there are two or more clustevsill be modified to accommodate the possible fractal geom-
of the same maximal ranKThis is a rare event—akin to a etry of clusters.
four-body interaction—and it is ignored in the model equa- We now define
tions given below.

(5 We terminate the inverse cascade of elements from Li=N;il; 2.7
small to large clusters by eliminating clusters of a specified
high rank. to be the total size of the boundary associated with clusters

_In Fig. 1, we illustrate how this model works. We now of ranki. We select the normalization for our time scale so
WI.Sh to espabhsh the dynamical equations governing the evohat ri;=LiL;. Accordingly, letC be the injection rate of
lution of this system. Let us defind; to be the number of sjngle elements, utilizing this time scale. The evolution of

clusters with rank, fori=1. Letm; be the average mass— the system can be determined by appropriately adapting Egs.
i.e., the number of elements—of a cluster of rankhen, the  (2.2—(2.5). From Eqs.(2.2) and(2.4), we write

total massM; of the clusters of rank is given by

%

N,=C—2L2- L,L, 2.8
M;=N;m; . 2. 1 -2, Lty 28
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) * a long time. Otherwise, we will have a completely space-
Ni:Liz—l_ZLiz_, 2 LiL; for i>1. (2.9 filling solution and percolation effects will govern. We can
=i+l regard thiglimited) steady-state solution to be an intermedi-

In Eqg.(2.8), we observe that the rate of change in the numbegé?ibaesﬁwstgitﬁﬁg df:rtr?;tr s%se:ren;s_glé:‘o?glmgzo\ll\;::o?]eén d
of clusters of rank 1 is equal to the injection rate minus the S €rge P
ace-filling issues become significant. The steady-state so-

rate of coalescence of rank 1 clusters together with the rat?p. . L .
. ution follows when the time derivatives in the left hand
of coalescence of rank 1 clusters with clusters of larger rank,

The factor of 2 appears becauss rank 1 clusters were lost sides of Eqs(2.8—(2.11) vanish, with the result

in coalescing to form a rank 2 cluster. Meanwhile, in Eq. o

(2.9, we observe that the rate of change in the number of C=2L§+E LiL;, (3.2
clusters of rank is equal to the rate of rankcluster forma- j=2

tion from the coalescence of pairs of rank 1 clusters, mi-
nus the rate of coalescence of pairs of randlusters, to-

©

2 _ 2 H
gether with the rate of coalescence of ranklusters with Lig=2L; +j=2rl LiLj for i>1, 3.2
clusters of larger rank>i.
In a similar way, taking into accoumh;=1, we can ex- i-1 o
press the mass-balance in the system, derived from(E¢gs. 2L2  m_,+ > LiL,me=2L%m; + > LiL;m;
and(2.5), according to k=1 j=i+1
_ w for i>1. (3.3
M;=C—2L2— > L,L;, 2.1
! ! jZZ 1) (2.19 As noted earlier, Eq92.8) and (2.10 are equivalent.
_ Equation(3.2) has a self-similar solution, since that equa-
. 5 -1 5 tion is invariant undei—i+1, and depends only doj /L; .
Mi=2L7 jmj_;+ k§=:1 LiLyme—2L7m, Thus, we seek a solution having the form
- Li=ax 1, (3.9
- > LiLym for i>1. (2.11) _ ,
=i+l where 0<x<1. The first of these constraints oncorre-

sponds to boundary sizes being positive, while the second is

Note that Eqgs(2.8) and(2.10 are identical, sincé1,=N;.  necessary for the summation to exist. We find thaatisfies
We observe that the equations above have the potential

for self-similarity, since most of the sums are infinite in ex- ) o )
tent, and might be expected to be convergent. Intuitively, we 2x% 72+ _2 X TIm2=x274, (3.9
expect thal ; will diminish asj increases; while the bound- =t

ary size of |nd|V|_duaI clusters of raqkmcreasg, their abso- Summing the infinite geometric series explicitly, and divid-
lute numbers will decrease even more rapidly so that th‘fng by x2 4, we obtain

total boundary size in clusters of rapkwill be monotone ’
decreasing. The finite sum, which appears in 911, is X3

somewhat more involved. Nevertheless, it is reasonable to 2x%+ 1_X=1 or x3—-2x>-x+1=0. (3.6
expect that the product ah, with L, will steadily diminish

as k becomes smaller and that negligible contributionsypig equation has a single root in the rangeco<1

emerge from low values &€ Finally, it is easy to see that all namely,x=0.5549588 . . . . Given Eqs.(3.1) and(3.6), we
of the governing rate equations will quickly converge, in theg 4 tha,t '

sense of an inverse cascade froml to some finite cutoff,

ast—o. As N, begins to grow, it provides a stimulus to the C=a%[2+x/(1-x)]=a®> or a=C"2 (3.7
growth of N,, and so on. Similarly, as the masses at each

rank in the system grow, they will in turn cause the boundarySubstitution of these results into EQ.4) gives

sizel; of each cluster of rankto grow, basically in propor- )

tion to some power i, . With this intuition in hand, we L;=C"40.55495818 ~*. (3.9
now obtain the steady-state solution for this system.

o)

We now turn our attention to E¢3.3). We substitute Eq.
(3.4 into Eq. (3.3, dividing by a?x' 2 and taking into ac-

Ill. STEADY-STATE SOLUTION: CLUSTER AND MASS count Eq.(3.6). We then obtain

SCALING

We derive a steady-state solution for an inverse cascade - 12
from Egs.(2.8) — (2.11). In our inverse cascade, single ele- 2x! 1mi*1+kzl X mye=2x my 1
ments are introduced at the lowest level, and they coalesce to (3.9
form larger and larger clusters. The inverse cascade is termi-
nated by assuming that very large clusters are removed fromhis equation does not have an exactly self-similar solution,
the system. We assume that our system develops in a suffiince it is not invariant under—i+1. Suppose that we
ciently large region, so that edge effects can be ignored ovanake the substitution

m=x"'m.
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lm=yi Tt (3.10  As before,rj; is the rate of coalescence between clusters of
ranksi andj. This modification can, for example, describe

assuming thaty>1, whereupon, from summing the finite the increased efficiency with which a smaller cluster can coa-

X

series, we obtain lesce with a larger one, since the smaller cluster can become
_ attached inside one of the nooks and crannies that can char-
P 2y"l—l il acterize a fractal perimeter.
2Xy X y—1 Y (31D With this modification, we obtain analogs of Eq8.8)—
(2.1:
We observe that the solution fgrin this equation depends .
uponi. However, for large, Eq. (3.11) approximately im- - . 2 1—i
plies, assuming that we can replage '—1 by y' 1, that N1=M1=C—2L1—;2 e ILaly, (4.2
2x+x%yl(y—1)=y, which we rewrite as
2 2 — - ” A
y* = (X+1)%y+2x=0. (3.12 Ni=L?,—2L2— > &L, for i>1, (4.3
jST+1
This equation has a unique solution fgi>1, namely,y
=1/Xx=1.801937 ... . Accordingly, for largei, we have i i-1 _
asymptotic self-similarity with M;=2L% ;mi_;+ gl €L Lm,— 2L2m;
mi~ax' "'y "l=ac 7, (3.13 w
: - SiLLm for i>1. 4.4
wherec=1/x?=3.246976Q . . . . With m,=1, we have j A, € mmme or “9
m;~(3.24697602 . (3.14  In the steady state, we obtain analogs of E§sl)—(3.3):

Before moving to issues dealing with fractals and branch- *
ing, the solutions we have just obtained Egrand form; can C= 2Lf+ 2 el LiLj, (4.5
be immediately exploited. Sindg«x' and, approximately, =2
m;ocx 2, we observe thdt;/m;,~ const. For example in two
dimensions, recalling thdt;=N;l; and introducing the Eu-

[

LZ =2L2+ X €Ly for i>1, (4.6

clidean relation thak;o\/m;, it follows thatN;m;~const. or, =¥
equivalently, we find the number-mass or number-area rela-
tionships i-1
2L2 my_q+ >, ILiLmy

N 1/m; o< T/A, . (3.19 =] '
This is equivalent to Eq(1.1) with «=1. The branch num- oy 2 . i—ir 1 .
bersN; are loosely equivalent to a logarithmic binning of 2L m'+j:iz+1 e 'Likjm; for i>1.
cluster sizes. Logarithmic binning is equivalent to a cumula-

tive distribution. Thus the result given in E¢3.15 is in (4.7)
agreement with the distribution of cluster sizes obtaine ubstituting Eq(3.4) into Eq. (4.6), we obtain an analog of
from the forest-fire model, as discussed above. The conce 4. (3.6): ' e

of clusters can also be extended to both sandpile and slider-"" *~""

block models. In these cases, the clusters are the metastable X3

regions that will avalanche or slip when an event is triggered. 2%x2+ —— =1 or xX3—2ex’—x+e=0

In both cases, the cumulative distribution of cluster sizes X

satisfy Eq.(1.1) with a~1. These scaling relationships are

archetypical of self-organized criticality. Remarkably, this or e=
scaling has been deduced using solely analytic means from

our inverse-cascade hierarchical cluster model.

4.9

As L; are positive x must be positive from its definition in
Eq. (3.4). Suppose that=x. Thenx—2x3=x—x3, gving
IV. ADAPTATION FOR FRACTAL PERIMETER: x=0, a contradiction. Accordingly, for positive the sign of
CLUSTER AND MASS SCALING e—x=x%/(1—2x?) changes only atx=.1/2, where e

In the analysis given in the previous sections, we assumeghanges sign as it passes through infidiye to the denomi-
that the rate of cluster coalescengewas proportional to the Natoy. Itis easy to see that the signs of beth x ande are
linear dimensions of the two clusters as given in E46).  Positive for 0<x<1/2, and negative fox>\1/2. As x
We now generalize this dependence to account for the pos= € is nesessary for the summation of the geometric series to
sibility of fractal clusters by introducing an “efficiency” fac- exist, this implies thak< \/1/2. In addition, the conditior
tor e<1, with an appropriate scaling such that <1 requires thak<<0.5549588 ... . Forexample,x=0.5

corresponds te=3/4. From Eqs(4.5 and(4.8), we obtain
rijme_“_ilNililej:e_lj_ill_il_j_ (41) thata:XCl/Z, for anyE.
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Let us turn now to the mass balance equatin). Sub-
stituting Eq.(3.4) and assuming' ~m;=y' "1, we obtain an
analog of Eq(3.11:

. (ey)T1-1 .
2xy"2+xzelf'L:y'*l. (4.9
ey—1 ) () © d)
We assume thaty>1. Precisely as in Eq3.11), we ob- FIG. 2. lllustration of the concept of branching applied to the

serve that the solution farin this equation depends upon  coalescence of clusterga) A single element(b) Two single ele-
However, for largei, Eq. (4.9) approximately implies that ments have been linked to form a cluster or rank “2,” and a third

2x+x%yl(ey—1)=vy, which we rewrite as element has joined this cluster as a side brat@hTwo clusters of
rank “2” have coalesced to form a cluster of rank “3.” Another
ey’ — (X?+2ex+1)y+2x=0. (4.10 cluster of rank “2” and two single elements have been added to

this cluster.(d) Two clusters of rank “3” have coalesced to form a

Due to Eq.(4.8), Eq.(4.10 has a solutiory=1/x for anye.  cluster of rank “4.” Another cluster of rank “3,” two clusters of
Note that conditioney>1 is satisfied fory=1/x. Accord-  rank “2” and four single elements have been added to this cluster.
ingly, for largei, we have asymptotic self-similarity with
m;~ac' "1, wherec=1/x?% as in Eq.(3.13. For example, etc., are counted amibclusterof the larger cluster. In anal-
when e=3/4, we havec=4. ogy to river networks, branches are to tributaries as clusters

It is important to remember thatdescribes the perimetric are to drainage basins. A branch formed by the cluster of
fractal scaling for the clusters. The relationship between peranki is considered to be a subcluster too, and is assigned the
rimetric and areal scaling remains a controversial topicranki. Any other subcluster is assigned the rank of a cluster
However, assuming that one can identify an appropriate linfrom which it first formed as a branch. In analogy to river
between the two, for example in the context of forest fire ometworks, subclusters of a cluster correspond with the
other models, then the preceding discussion makes it postreams in a drainage basin. The casg is treated simi-
sible to identify the frequency-area relationship for fractallarly. In the casei=j, both clusters of rank become
clusters, in analogy to thi«1/A relationship we identified branches of rank of the new cluster of rank+ 1. Subclus-

previously for Euclidian clusters. ters and their ranks are defined the same way as above.
Let t;; be the average number of branches of raik a
V. BRANCHING NUMBERS cluster of rankj, fori<j, and letn;; be the total number of

i i subclusters of rankin a cluster of rank. Fori=j, we define
In the analogy between clustering and river networks tha{_

i ) i=n;; =1. By definition, fori<j we have
we have discussed above, for our clusters we can write " " y J

j-1
%=x2, (5.1) nij:z’i Niktyj - (5.3
i

which is known as the bifurcation ratio for river networks. Moreover, letN;;=N;n;; be the total number of subclusters
Also, we have of ranki for all clusters of rank, and letT;;=N;t;; be the
total number of branches. This classification scheme is illus-
l; trated in Fig. 2. In Fig. @), we have a cluster of rank 1
[T (52 which corresponds to a single tree in the forest-fire model. In
Fig. 2b), two clusters of rank 1 have coalesced to form a
which is known as the length-order ratio for river networks. cluster of rank 2. This cluster has been joined by a cluster of
For river networks, the fact that these two ratios are almostank 1. In the forest-fire model, two trees on adjacent grid
constant is known as Horton’s la&1]. points have been joined by a third tree. In Fige) 2nd 2d),

A major step forward in classifying river networks was clusters of rank 3 and 4 are illustrated. For this example, we
made by Tokunagfl2?]. He extended the Strahler ordering have n;,=n,3=n3,=3, Nj3=Nyu=11, N, =43, t,=ty
system to include side branching. A first-order branch join-=tg,=3, t;3=t,,=2, andt,,=4.
ing another first-order branch is denoted by the subscript As before, we regard the coalescence of more than two
“11,” and the number of such branchesNg;; a first-order  clusters as being exceedingly rare and neglect them in our
branch joining a second-order branch is subscripted “12,"treatment. When two clusters of ranksindj coalesce, we
and the number of such branchedNis,; and a second-order prescribe the mappings foM,;, Nij, Ty, andT;; as de-
branch joining a second-order branch is subscripted “22,”scribed below. When=,
and the number of such brancheNs,.

In order to apply the concept of side branching to the Ny ; =Ny 1+2ng, Ng—Ng—2n, for k<i,

coalescence of clusters, let us suppose that we have a coa- (5.9
lescence of two clusters, of rankandj. In the case<j, the

cluster of ranki becomes dranch of the cluster of rank. Tiiv1—Tiir1+t2, T Tu— 2t for k<i;
Note that, if the smaller cluster has its own branches, these (5.5

branches areot counted as branches of the larger cluster.
However, these branches, together with all of their branchesand, wheni <j,
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Nij—=>Ngj+ i, Ng—=>Ng—ny;  for k<i, (5.6 X!~y =2k (6.5

Ti—>Ti+1, Ta—>Th—tg for k<i. (5.7 ~assumingz>1, and, from summing the finite series in Eq.
(6.4), we obtain
Given the rate of coalescencg=L,L;, we describe the

. . . = . j—k_
time evolution of the branching process by the equations o7 k142 Z]z— 11 —zik (6.6)
-1
Nkj:2|—j2—1nk,j—1+z LiLjng—2L7ny ApproximatingzZ ~X—1 by Z X in the asymptotic limit]
1=k >k, Eq. (6.6) approximately implies that 2+ xz/(z— 1)
© :Z, or
- LiLin, for k<j 5.8
i=;2+1 ik : ©8 22— (x+1)%z+2x=0. (6.7)
from Egs.(5.4) and(5.6), and This latter equation isdentical to Eq. (3.12, and has a
) unigue solutionz>1, namely,z=1/x=1.801937 ... and,
Tiogy=2L7 +Lj k=2l thereby, demonstrates that the branching network description
. preserves the same structural character. Accordinglyj for
) >k, we have
- E LiLjtj—q; for j>1, (5.9
K N~ BX< 1217 %= gei =K, (6.8
= o2 . - where c=1/x>=3.246976@Q ... asbefore. Thus we have
Tij=LiL;—2L%; k;,“ﬂ LLjty for i<j—1 approximately
5.1 _
(.19 N~ (3.24697609 * (6.9
from Eqgs.(5.5 and(5.7). As before, we turn our focus to the | . L ) -
steady-state solution of Eq5.8)—(5.10. in the limit j>k. For the deterministic example given in Fig.

1, we haven,j~41~* for j>k. Substituting Eq/(3.4) into

i 2,2j-4 :
VI. STEADY STATE: BRANCHING NUMBERS Eq. (6.9 and dividing bya™ ", we obtain

3

42 0y2t 4 S ot i
X 2X t”+1—xt” t; for i<j—1, (6.10

We begin for the steady state case by setting the time
derivatives in the left hand sides of equati@dfs8)—(5.10 to
zero. We obtain

which establishes that
i-1 “

e R i —
2Lj2_1nk’j_1+ iZk LiLjnkiZZsznkj+i %1 LiLjnkj tIJ_X for 1<J 1 (611)

[For the special case thatj—1, we have from Eq(6.2)
for k<j, (6.1)  that 2+x=t;_,;.] This, now, is functionally equivalent to
the similitude relationship assumed by Tokunaga, namely,

©

. L=t =gx ]
2LJ271+L171LJ:2L]21:],1J+k:%rl Lijtjfl,j for J>1, tIJ t]*I ax .. (612

(6.2 Importantly, the behavior that Tokunagasumedo be valid
emerges in a completely natural way from the underlying
mathematics of our inverse cascade. Siree0.55495813,

LiLj=2L7t; +k;rl LiLjt; for i<j—1. (6.3  we have, for our inverse cascade,

oo

- : _ t;;=(0.55495813 "I *1. 6.1
We observe that, due to the finite summation present in Eq. = 3 .13

(6.1), it is not invariant undef —k—j—k+1, and its solu-  For the deterministic example given in Fig. 1, we haye
tion is not exactly self-similar i —k. However, we now = (1/2)~i*1,

employ the same methodology used in Sec. lil and obtain an Finally, the connection between our treatment of branch-
asymptotically valid approximate solution. In particular, we jng and our earlier treatment of clustering needs to be estab-

substitute Eq(3.4) into Eq. (6.1), and divide bya’ **"*, " jished. In particular, we observe that, tumns out to be
and we obtain equivalent ton,; and that both scale ag ™! where, as we
i1 . have already seew=1/x2.
) ) ) X]—k+3
237K g+ D, XK 2 =2x 7K 20, + N
ki-t i§=:k . KT 1-x M VIl. ADAPTATION FOR FRACTAL PERIMETER:
- BRANCHING NUMBERS
:XJ nk]' . (64)

The branching analysis given in Sec. IV is easily modified
Based on our result obtained using E8.10, we introduce to include the fractal perimeter dependence introduced in Eq.
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(4.1). Introducing this relation into Eq$5.8)—(5.10), we ob-
tain

j-1

NijZsz_lnk’j_l'f' igk fi_jLiLjnki_Zsznkj

©

- E EjiiLiLjnkj

iZ7+1

for k<j, (7.1

— 2 -1 2
71,j—2|—j—1+6 LJ*lL]_ZL]tJ*l,J
_k—z GjikLkL]‘tJ‘,l’j for ]>l, (72)
=j+1

©

> &
j+1

:rij:Ei_jLiLj_Zsztij_ kLkLJt” for |<]_1

(7.3
In the steady state, we obtain analogs of Egsl)—(6.3):

ji—1
2 L
2Lj71nk'j,1+ iZk El ]LiLjnki

=2L%n+ 2 IFILLing  for k<j,
i=j+1
(7.4)
2 -1 _ 2
2Lj71+6 Ljfle_ZL'tjfl,j
+ 2 “LiLjtj_q; for j>1,
k=j+1
(7.5
€ ILiL; 2L2t,J+ 2 KLyLjt;  for i<j-—1.
(7.6)

Substltutlng Eq (3.4 into Eq. (7.4), and assuming that

x) K j—zJ , we obtain, due to Eq4.8), an analog of Eq.
(6.6), namely
. (ez)) k=1
j—k—1 2 _k—j — 5k
2xZ7 +X%€ o1 zZ7K, (7.7)

Assumingez>1, we approximatedz)! ¥—1 by (ez)) X in
the asymptotic limitj>k. In this case, Eq(7.7) approxi-
mately implies that 2+x?z/(ez—1)=z, or
€2°— (X*>+2ex+1)z+2x=0. (7.9

This latter equation igdentical to Eq.(4.10, and has a so-
lution z=1/x, for any e. Accordingly, for j>k, we have
asymptotic ~ self-similarity with ny;~gx* "1z ~k=pcl 7K,
wherec=1/x? as before.

Substituting Eq.(3.4) into Eq. (7.6) and dividing by
ax?~*, we obtain

EXACTLY SOLUBLE HIERARCHICAL CLUSTERING . ..
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o x3
EI_JXI_J+2:2X2tij+_tij:tij for |<J—1
e—X
(7.9
which establishes that
tj=e IX'I*2 for i<j-1. (7.10

[For the special case thatj—1, we have from Eq(7.5

that 2+x/e=t;_4;.] Thus, our modification of the Euclid-
ean model to accommodate fractal perimetric behavior is
complete, and the self-similar description of the branching
process has been shown to follow in a completely analogous
way.

VIIl. CONCLUSIONS AND DISCUSSION

In this paper, we have presented an inverse cascade model
for clustering. This model requires the following.

(1) The addition of single elements at a prescribed small
scale.

(2) The consideration of the clustering process as a hier-
archical tree with side branching.

(3) The probability that a cluster of one order will coa-
lesce with another cluster of the same or different order is
proportional to the product of the number of trees of the two
orders and the square root of their mas@@sareas

(4) Clusters are lostdestroyed at a prescribed large
scale.

Our inverse cascade model provides a general explanation
for the behavior of several models that have been considered
to exhibit behavior which has often been described as “self-
organized criticality,” and occurs in various settings includ-
ing the “forest-fire” model. In this model, the planting of
individual trees is the introduction of single elements, and
coalescence occurs when a planted tree bridges the gap be-
tween two existing clusters. The model “fires” burn signifi-
cant numbers of trees only in the largest clusters, and this
terminates the inverse cascade. Our model gives the number-
mass(or area distribution to beN« 1/A; this is also found to
be the case for the forest-fire model. Our model is also ap-
plicable for the sandpile and slider-block models. In the
sandpile model, the cluster is the region over which an ava-
lanche will spread once it is initiated. In the slider-block
model, the cluster is the region over which a slip event will
spread once it is initiated. The initiation of an avalanche in
the sandpile model and the initiation of a slip event in the
slider-block model are equivalent to a spark being dropped
on a tree. In both models the clusters grow by coalescence.

We conclude that these models, which are said to exhibit
self-organized criticality, are neither critical nor self-
organized. Instead, their behavior is associated with an in-
verse cascade which asymptotically approadiseslong as
the largest scales are not involyegower-law (“fractal” )
scaling. This behavior is related to the self-similar direct cas-
cade associated with the inertial-range of fully developed
isotropic turbulence. This behavior qualifies as a form of
“intermediate asymptoticsT10]. It is interesting to note that
earthquake$13], landslided14], and actual forest firglsl 5]
also have analogous power-law frequency-area distributions.

We have quantified our inverse cascade in terms of a
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branching tree hierarchy with side branching. We haveapplicable for river networkgl6], diffusion limited aggrega-
adapted the taxonomy used for river networks to the growttion clusterg17], and vein structures of leavg$8].

of our clusters. The order of each cluster is specified, and, in

our mean-field approximation, the number of clusters of each ACKNOWLEDGMENTS
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