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There is a deep and only partially understood connection between the classification

and structure of singularities and the Coxeter-Dynkin diagrams introduced by H.S.M. Cox-

eter for classification of reflection-generated groups, and by E.B. Dynkin for classification

of semisimple Lie algebras.

One of the main problems of the theory of singularities is classification of singular

objects of increasing complexity. The first objects in this theory are stable singularities

that are not destroyed by small perturbations. The next important class consists of simple

singularities: only a finite number of non-equivalent singularities appear as their small

perturbations.

Consider, for example, classification of critical points of germs of analytic functions

(C3, 0) → (C, 0). Each simple object in this classification appears, after a change of

variables in (C3, 0), in the following (A,D,E) list [1, 5, 8]:

Ak, k ≥ 1 Dk, k ≥ 4 E6 E7 E8

xk+1 + y2 + z2 xk−1 + xy2 + z2 x4 + y3 + z2 x3y + y3 + z2 x5 + y3 + z2

cyclic dihedral tetrahedral octahedral icosahedral

These are exactly Kleinian singularities [5, 8] associated with finite subgroups of SL2(C).

The algebra of invariants of the natural action of such a group on C2 was computed by

Klein. It is generated by three polynomials x, y, z, with a single relation. These relations

appear in the (A,D,E) list above, for cyclic groups and for binary dihedral, tetrahedral,

octahedral, icosahedral groups, respectively. Direct connection between finite subgroups

of SL2(C) and (extended) Dynkin diagrams is provided by McKay correspondence (see [8,

9]).

Several constructions link functions from the (A,D,E) list to the corresponding

Coxeter-Dynkin diagrams.

The zero set V0 = {f = 0} of each function f in the list has an isolated singularity

at 0. A resolution of the singularity is an analytic mapping from a nonsingular manifold

to V0 which is one-to-one on V0 \ 0. There is a unique minimal resolution, such that any

other resolution can be mapped through it. The exceptional divisor (preimage of 0) of



the minimal resolution consists of µ spheres CP1 (here µ is the index in Aµ, Dµ, or Eµ).

In the dual diagram of the exceptional divisor, a point corresponds to each sphere, and

an edge connects two points when the corresponding spheres intersect. For the functions

in the (A,D,E) list, the dual diagrams are the corresponding Coxeter-Dynkin diagrams

(A,D,E). This was found by Du Val in 1934 (see [5, 7]).

Let f(x) be an analytic function in Cn+1 with an isolated critical point at 0. For a

small δ > 0 and a non-zero ε � δ, the Milnor fiber of f is defined as the intersection of

the ball |x| < δ with the level set f = ε. It is a complex n-dimensional manifold with

homotopy type of a bouquet of µ = dimC C[[x]]/(∂f/∂xi) spheres of (real) dimension n.

These spheres are called vanishing cycles, as they are contracted to the origin as ε→ 0. For

a function from the (A,D,E) list (with n = 3), vanishing cycles can be naturally chosen to

form a basis of a root system of the corresponding (A,D,E) type in the two-dimensional

homology of the Milnor fiber with respect to the intersection index [4, 6].

A deformation of f(x) is an analytic function F (x, λ) such that F (x, 0) = f(x). A

deformation is versal if it is transversal to the orbit through f of the group of changes of

variables x. A versal deformation with the minimal (µ-dimensional) parameter space is

called miniversal. It is defined uniquely up to an isomorphism.

Let G be a simple, simply connected group over C. Let u be a subregular unipotent

element of G (i.e., the conjugacy class C of u in G has codimension r + 2 where r is rank

of G). Let T be a maximal torus of G, W the Weyl group, and p : G→ T/W projection

defined as p(x) = set of all elemants of T conjugate to the semisimple part of x. Let V be

a transversal to C through u in G. Brieskorn proved that p : V → T/W is the miniversal

deformation of the corresponding Kleinian singularity [8].

The discriminant Σ of a miniversal deformation consists of those λ for which 0 is

a critical value of F (x, λ) (as a function of x). For each λ /∈ Σ, the zero set Vλ of

F (x, λ) is nonsingular, diffeomorphic to the Milnor fiber of f . This allows one to define a

representation of the fundamental group π of the complement of Σ in the n-dimensional

homology of the Milnor fiber, the monodromy group W of f . This group is generated by

reflections in vanishing cycles.

For the (A,D,E) list, W is the Weyl group of the root system of the corresponding

(A,D,E) type, while π is the corresponding braid group (see [1]). The space of parameters

of the versal deformation can be obtained as the space of invariants of the action of W in

the µ-dimensional complex space H2(Vλ,C), and Σ corresponds to singular orbits (mirrors)

of this action.

Several other classification problems produce the same A,D,E list: Lagrangian and

Legendrian singularities that appear in optics as the singularities of caustics and wave



fronts [2,4]. These singularities are closely related to the singularities of critical points of

the corresponding hamiltonians.

One more classification problem with the same list appears in quiver representations

(see [8, 9]). A quiver is a set of points, some of them connected by arrows. A representation

of a quiver associates to each point a linear space, and to each arrow a linear mapping

of the linear spaces corresponding to its beginning and ending points. A quiver is simple

if there are only finite number of equivalence classes of its irreducible representations. P.

Gabriel proved that connected simple quivers appear exactly when one replaces edges of a

Dynkin diagram from the (A,D,E) list by arrows with arbitrary directions.

The above examples represent only a starting point of the presence of Dynkin diagrams

in theory of singularities. One way of generalization is to search for Dynkin diagrams of

other Lie groups in various classification problems. For example, series Bk and Ck, and

exceptional singularities F4 and G2 appear in classification of singularities of hypersurfaces

over positive-characteristic fields [7], classification of the boundary singularities [4], and

classification of fractions of analytic functions [3]; non-crystallographic reflection groups

H3 and H4 appear in obstacle problems in R2 and R3 [2,4].

Another way is to study more complicated singularities that are not simple (see [4]).

Dynkin diagrams can be defined in this case, although they do not seem to correspond to

any Lie algebras. The corresponding Coxeter groups are infinite and their action is not

discrete.
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